Do you want to publish a course? Click here

Experimental Data from a Quantum Computer Verifies the Generalized Pauli Exclusion Principle

94   0   0.0 ( 0 )
 Added by David Mazziotti
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

What are the consequences ... that Fermi particles cannot get into the same state ... R. P. Feynman wrote of the Pauli exclusion principle, In fact, almost all the peculiarities of the material world hinge on this wonderful fact. In 1972 Borland and Dennis showed that there exist powerful constraints beyond the Pauli exclusion principle on the orbital occupations of Fermi particles, providing important restrictions on quantum correlation and entanglement. Here we use computations on quantum computers to experimentally verify the existence of these additional constraints. Quantum many-fermion states are randomly prepared on the quantum computer and tested for constraint violations. Measurements show no violation and confirm the generalized Pauli exclusion principle with an error of one part in one quintillion.

rate research

Read More

The Pauli Exclusion Principle (PEP) is one of the basic principles of modern physics and, even if there are no compelling reasons to doubt its validity, it is still debated today because an intuitive, elementary explanation is still missing, and because of its unique stand among the basic symmetries of physics. The present paper reports a new limit on the probability that PEP is violated by electrons, in a search for a shifted K$_alpha$ line in copper: the presence of this line in the soft X-ray copper fluorescence would signal a transition to a ground state already occupied by 2 electrons. The obtained value, ${1/2} beta^{2} leq 4.5times 10^{-28}$, improves the existing limit by almost two orders of magnitude.
The VIolation of Pauli exclusion principle -2 experiment, or VIP-2 experiment, at the Laboratori Nazionali del Gran Sasso searches for x-rays from copper atomic transition that are prohibited by the Pauli Exclusion Principle. Candidate direct violation events come from the transition of a $2p$ electron to the ground state that is already occupied by two electrons. From the first data taking campaign in 2016 of VIP-2 experiment, we determined a best upper limit of 3.4 $times$ 10$^{-29}$ for the probability that such a violation exists. Significant improvement in the control of the experimental systematics was also achieved, although not explicitly reflected in the improved upper limit. By introducing a simultaneous spectral fit of the signal and background data in the analysis, we succeeded in taking into account systematic errors that could not be evaluated previously in this type of measurements.
The Pauli Exclusion Principle is one of the basic principles of modern physics and is at the very basis of our understanding of matter: thus it is fundamental importance to test the limits of its validity. Here we present the VIP (Violation of the Pauli Exclusion Principle) experiment, where we search for anomalous X-rays emitted by copper atoms in a conductor: any detection of these anomalous X-rays would mark a Pauli-forbidden transition. ] VIP is currently taking data at the Gran Sasso underground laboratories, and its scientific goal is to improve by at least four orders of magnitude the previous limit on the probability of Pauli violating transitions, bringing it into the 10**-29 - 10**-30 region. First experimental results, together with future plans, are presented.
The Pauli exclusion principle (PEP) represents one of the basic principles of modern physics and, even if there are no compelling reasons to doubt its validity, it still spurs a lively debate, because an intuitive, elementary explanation is still missing, and because of its unique stand among the basic symmetries of physics. A new limit on the probability that PEP is violated by electrons was estabilished by the VIP (VIolation of the Pauli exclusion principle) Collaboration, using the method of searching for PEP forbidden atomic transitions in copper. The preliminary value, ${1/2}beta^{2} textless 4.5times 10^{-28}$, represents an improvement of about two orders of magnitude of the previous limit. The goal of VIP is to push this limit at the level of $10^{-30}$.
High-precision experiments have been done to test the Pauli exclusion principle (PEP) for electrons by searching for anomalous $K$-series X-rays from a Cu target supplied with electric current. With the highest sensitivity, the VIP (VIolation of Pauli Exclusion Principle) experiment set an upper limit at the level of $10^{-29}$ for the probability that an external electron captured by a Cu atom can make the transition from the 2$p$ state to a 1$s$ state already occupied by two electrons. In a follow-up experiment at Gran Sasso, we aim to increase the sensitivity by two orders of magnitude. We show proofs that the proposed improvement factor is realistic based on the results from recent performance tests of the detectors we did at Laboratori Nazionali di Frascati (LNF).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا