Do you want to publish a course? Click here

Low Threshold Acquisition controller for Skipper CCDs

191   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The development of the Skipper Charge Coupled Devices (Skipper-CCDs) has been a major technological breakthrough for sensing very weak ionizing particles. The sensor allows to reach the ultimate sensitivity of silicon material as a charge signal sensor by unambiguous determination of the charge signal collected by each cell or pixel, even for single electron-hole pair ionization. Extensive use of the technology was limited by the lack of specific equipment to operate the sensor at the ultimate performance. In this work a simple, single-board Skipper-CCD controller is presented, aimed for the operation of the detector in high sensitivity scientific applications. The article describes the main components and functionality of the Low Threshold Acquisition (LTA) together with experimental results when connected to a Skipper-CCD sensor. Measurements show unprecedented deep sub-electron noise of 0.039 e$^-_{rms}$/pix for 5000 pixel measurements.



rate research

Read More

We characterize the response of a novel 250 $mu$m thick, fully-depleted Skipper Charged-Coupled Device (CCD) to visible/near-infrared light with a focus on potential applications for astronomical observations. We achieve stable, single-electron resolution with readout noise $sigma sim 0.18$ e$^{-}$ rms/pix from 400 non-destructive measurements of the charge in each pixel. We verify that the gain derived from photon transfer curve measurements agrees with the gain calculated from the quantized charge of individual electrons to within < 1%. We also perform relative quantum efficiency measurements and demonstrate high relative quantum efficiency at optical/near-infrared wavelengths, as is expected for a thick, fully depleted detector. Finally, we demonstrate the ability to perform multiple non-destructive measurements and achieve sub-electron readout noise over configurable subregions of the detector. This work is the first step toward demonstrating the utility of Skipper CCDs for future astronomical and cosmological applications.
We present the status of on-going detector development efforts for our joint NASA/CNES balloon-borne UV multi-object spectrograph, the Faint Intergalactic Redshifted Emission Balloon (FIREBall-2; FB-2). FB-2 demonstrates a new UV detector technology, the delta-doped Electron Multiplying CCD (EMCCD), in a low risk suborbital environment, to prove the performance of EMCCDs for future space missions and Technology Readiness Level (TRL) advancement. EMCCDs can be used in photon counting (PC) mode to achieve extremely low readout noise ($<$1 electron). Our testing has focused on reducing clock-induced-charge (CIC) through wave shaping and well depth optimization with a uvu V2 CCCP Controller, measuring CIC at 0.001 e$^{-}$/pixel/frame. This optimization also includes methods for reducing dark current, via cooling, and substrate voltage levels. We discuss the challenges of removing cosmic rays, which are also amplified by these detectors, as well as a data reduction pipeline designed for our noise measurement objectives. FB-2 flew in 2018, providing the first time an EMCCD was used for UV observations in the stratosphere. FB-2 is currently being built up to fly again in 2020, and improvements are being made to the EMCCD to continue optimizing its performance for better noise control.
The first stage of the construction of the deep underwater neutrino telescope Baikal-GVD is planned to be completed in 2024. The second stage of the detector deployment is planned to be carried out using a data acquisition system based on fibre optic technologies, which will allow for increased data throughput and more flexible trigger conditions. A dedicated test facility has been built and deployed at the Baikal-GVD site to test the new technological solutions. We present the principles of operation and results of tests of the new data acquisition system.
We present results from a 54.7 live-day shielded run of the DRIFT-IId detector, the worlds most sensitive, directional, dark matter detector. Several improvements were made relative to our previous work including a lower threshold for detection, a more robust analysis and a tenfold improvement in our gamma rejection factor. After analysis, no events remain in our fiducial region leading to an exclusion curve for spin-dependent WIMP-proton interactions which reaches 0.28 pb at 100 GeV/c^2 a fourfold improvement on our previous work. We also present results from a 45.4 live-day unshielded run of the DRIFT-IId detector during which 14 nuclear recoil-like events were observed. We demonstrate that the observed nuclear recoil rate of 0.31+/-0.08 events per day is consistent with detection of ambient, fast neutrons emanating from the walls of the Boulby Underground Science Facility.
650 - J. A. Tyson 2015
Thick fully depleted CCDs, while enabling wide spectral response, also present challenges in understanding the systematic errors due to 3D charge transport. This 2014 Workshop on Precision Astronomy with Fully Depleted CCDs covered progress that has been made in the testing and modeling of these devices made since a workshop by the same name in 2013. Presentations covered the science drivers, CCD characterization, laboratory measurements of systematics, calibration, and different approaches to modeling the response and charge transport. The key issue is the impact of these CCD sensor features on dark energy science, including astrometry and photometry. Successful modeling of the spatial systematics can enable first order correction in the data processing pipeline.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا