No Arabic abstract
Channel state information (CSI) feedback is critical for frequency division duplex (FDD) massive multi-input multi-output (MIMO) systems. Most conventional algorithms are based on compressive sensing (CS) and are highly dependent on the level of channel sparsity. To address the issue, a recent approach adopts deep learning (DL) to compress CSI into a codeword with low dimensionality, which has shown much better performance than the CS algorithms when feedback link is perfect. In practical scenario, however, there exists various interference and non-linear effect. In this article, we design a DL-based denoise network, called DNNet, to improve the performance of channel feedback. Numerical results show that the DL-based feedback algorithm with the proposed DNNet has superior performance over the existing algorithms, especially at low signal-to-noise ratio (SNR).
In frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO), deep learning (DL)-based superimposed channel state information (CSI) feedback has presented promising performance. However, it is still facing many challenges, such as the high complexity of parameter tuning, large number of training parameters, and long training time, etc. To overcome these challenges, an extreme learning machine (ELM)-based superimposed CSI feedback is proposed in this paper, in which the downlink CSI is spread and then superimposed on uplink user data sequence (UL-US) to feed back to base station (BS). At the BS, an ELM-based network is constructed to recover both downlink CSI and UL-US. In the constructed ELM-based network, we employ the simplifi
Massive multiple-input multiple-output can obtain more performance gain by exploiting the downlink channel state information (CSI) at the base station (BS). Therefore, studying CSI feedback with limited communication resources in frequency-division duplexing systems is of great importance. Recently, deep learning (DL)-based CSI feedback has shown considerable potential. However, the existing DL-based explicit feedback schemes are difficult to deploy because current fifth-generation mobile communication protocols and systems are designed based on an implicit feedback mechanism. In this paper, we propose a DL-based implicit feedback architecture to inherit the low-overhead characteristic, which uses neural networks (NNs) to replace the precoding matrix indicator (PMI) encoding and decoding modules. By using environment information, the NNs can achieve a more refined mapping between the precoding matrix and the PMI compared with codebooks. The correlation between subbands is also used to further improve the feedback performance. Simulation results show that, for a single resource block (RB), the proposed architecture can save 25.0% and 40.0% of overhead compared with Type I codebook under two antenna configurations, respectively. For a wideband system with 52 RBs, overhead can be saved by 30.7% and 48.0% compared with Type II codebook when ignoring and considering extracting subband correlation, respectively.
Accurate channel state information (CSI) feedback plays a vital role in improving the performance gain of massive multiple-input multiple-output (m-MIMO) systems, where the dilemma is excessive CSI overhead versus limited feedback bandwith. By considering the noisy CSI due to imperfect channel estimation, we propose a novel deep neural network architecture, namely AnciNet, to conduct the CSI feedback with limited bandwidth. AnciNet extracts noise-free features from the noisy CSI samples to achieve effective CSI compression for the feedback. Experimental results verify that the proposed AnciNet approach outperforms the existing techniques under various conditions.
Forward channel state information (CSI) often plays a vital role in scheduling and capacity-approaching transmission optimization for massive multiple-input multiple-output (MIMO) communication systems. In frequency division duplex (FDD) massive MIMO systems, forwardlink CSI reconstruction at the transmitter relies critically on CSI feedback from receiving nodes and must carefully weigh the tradeoff between reconstruction accuracy and feedback bandwidth. Recent studies on the use of recurrent neural networks (RNNs) have demonstrated strong promises, though the cost of computation and memory remains high, for massive MIMO deployment. In this work, we exploit channel coherence in time to substantially improve the feedback efficiency. Using a Markovian model, we develop a deep convolutional neural network (CNN)-based framework MarkovNet to differentially encode forward CSI in time to effectively improve reconstruction accuracy. Furthermore, we explore important physical insights, including spherical normalization of input data and convolutional layers for feedback compression. We demonstrate substantial performance improvement and complexity reduction over the RNN-based work by our proposed MarkovNet to recover forward CSI estimates accurately. We explore additional practical consideration in feedback quantization, and show that MarkovNet outperforms RNN-based CSI estimation networks at a fraction of the computational cost.
To fully exploit the advantages of massive multiple-input multiple-output (m-MIMO), accurate channel state information (CSI) is required at the transmitter. However, excessive CSI feedback for large antenna arrays is inefficient and thus undesirable in practical applications. By exploiting the inherent correlation characteristics of complex-valued channel responses in the angular-delay domain, we propose a novel neural network (NN) architecture, namely ENet, for CSI compression and feedback in m-MIMO. Even if the ENet processes the real and imaginary parts of the CSI values separately, its special structure enables the network trained for the real part only to be reused for the imaginary part. The proposed ENet shows enhanced performance with the network size reduced by nearly an order of magnitude compared to the existing NN-based solutions. Experimental results verify the effectiveness of the proposed ENet.