Do you want to publish a course? Click here

The nonlinear initiation of side--branching by activator-inhibitor-substrate (Turing) morphogenesis

156   0   0.0 ( 0 )
 Added by Arik Yochelis
 Publication date 2020
  fields Physics Biology
and research's language is English
 Authors Arik Yochelis




Ask ChatGPT about the research

An understanding of the underlying mechanism of side--branching is paramount in controlling and/or therapeutically treating mammalian organs, such as lungs, kidneys, and glands. Motivated by an activator-inhibitor-substrate approach that is conjectured to dominate the initiation of side--branching in pulmonary vascular pattern, I demonstrate a distinct transverse front instability in which new fingers grow out of an oscillatory breakup dynamics at the front line, without any typical length scale. These two features are attributed to unstable peak solutions in 1D that subcritically emanate from the Turing bifurcation and that exhibit repulsive interactions. The results are based on a bifurcation analysis and numerical simulations, and provide a potential strategy toward developing a framework of side--branching also of other biological systems, such as plant roots and cellular protrusions.



rate research

Read More

The Turing patterning mechanism is believed to underly the formation of repetitive structures in development, such as zebrafish stripes and mammalian digits, but it has proved difficult to isolate the specific biochemical species responsible for pattern formation. Meanwhile, synthetic biologists have designed Turing systems for implementation in cell colonies, but none have yet led to visible patterns in the laboratory. In both cases, the relationship between underlying chemistry and emergent biology remains mysterious. To help resolve the mystery, this article asks the question: what kinds of biochemical systems can generate Turing patterns? We find general conditions for Turing pattern inception -- the ability to generate unstable patterns from random noise -- which may lead to the ultimate formation of stable patterns, depending on biochemical non-linearities. We find that a wide variety of systems can generate stable Turing patterns, including several which are currently unknown, such as two-species systems composed of two self-activators, and systems composed of a short-range inhibitor and a long-range activator. We furthermore find that systems which are widely believed to generate stable patterns may in fact only generate unstable patterns, which ultimately converge to spatially-homogeneous concentrations. Our results suggest that a much wider variety of systems than is commonly believed could be responsible for observed patterns in development, or could be good candidates for synthetic patterning networks.
Excitable pulses are among the most widespread dynamical patterns that occur in many different systems, ranging from biological cells to chemical reactions and ecological populations. Traditionally, the mutual annihilation of two colliding pulses is regarded as their prototypical signature. Here we show that colliding excitable pulses may exhibit soliton-like crossover and pulse nucleation if the system obeys a mass conservation constraint. In contrast to previous observations in systems without mass conservation, these alternative collision scenarios are robustly observed over a wide range of parameters. We demonstrate our findings using a model of intracellular actin waves since, on time scales of wave propagations over the cell scale, cells obey the conservation of actin monomers. The results provide a key concept to understand the ubiquitous occurrence of actin waves in cells, suggesting why they are so common, and why their dynamics is robust and long-lived.
An activator-inhibitor-substrate model of side-branching used in the context of pulmonary vascular and lung development is considered on the supposition that spatially localized concentrations of the activator trigger local side-branching. The model consists of four coupled reaction-diffusion equations and its steady localized solutions therefore obey an eight-dimensional spatial dynamical system in one dimension (1D). Stationary localized structures within the model are found to be associated with a subcritical Turing instability and organized within a distinct type of foliated snaking bifurcation structure. This behavior is in turn associated with the presence of an exchange point in parameter space at which the complex leading spatial eigenvalues of the uniform concentration state are overtaken by a pair of real eigenvalues; this point plays the role of a Belyakov-Devaney point in this system. The primary foliated snaking structure consists of periodic spike or peak trains with $N$ identical equidistant peaks, $N=1,2,dots ,$, together with cross-links consisting of nonidentical, nonequidistant peaks. The structure is complicated by a multitude of multipulse states, some of which are also computed, and spans the parameter range from the primary Turing bifurcation all the way to the fold of the $N=1$ state. These states form a complex template from which localized physical structures develop in the transverse direction in 2D.
We studied dendritic side-branching mechanism in the experiment of anisotropic viscous fingering. We measured the time dependence of growth speed of side-branch and the envelop of side-branches. We found that the speed of side-branch gets to be faster than one of the stem and the growth exponent of the speed changes at a certain time. The envelope of side-branches is represented as Y ~ X^1.47.
Reaction-diffusion processes across layered media arise in several scientific domains such as pattern-forming E. coli on agar substrates, epidermal-mesenchymal coupling in development, and symmetry-breaking in cell polarisation. We develop a modelling framework for bi-layer reaction-diffusion systems and relate it to a range of existing models. We derive conditions for diffusion-driven instability of a spatially homogeneous equilibrium analogous to the classical conditions for a Turing instability in the simplest nontrivial setting where one domain has a standard reaction-diffusion system, and the other permits only diffusion. Due to the transverse coupling between these two regions, standard techniques for computing eigenfunctions of the Laplacian cannot be applied, and so we propose an alternative method to compute the dispersion relation directly. We compare instability conditions with full numerical simulations to demonstrate impacts of the geometry and coupling parameters on patterning, and explore various experimentally-relevant asymptotic regimes. In the regime where the first domain is suitably thin, we recover a simple modulation of the standard Turing conditions, and find that often the broad impact of the diffusion-only domain is to reduce the ability of the system to form patterns. We also demonstrate complex impacts of this coupling on pattern formation. For instance, we exhibit non-monotonicity of pattern-forming instabilities with respect to geometric and coupling parameters, and highlight an instability from a nontrivial interaction between kinetics in one domain and diffusion in the other. These results are valuable for informing design choices in applications such as synthetic engineering of Turing patterns, but also for understanding the role of stratified media in modulating pattern-forming processes in developmental biology and beyond.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا