Do you want to publish a course? Click here

Asynchronous Interaction Aggregation for Action Detection

104   0   0.0 ( 0 )
 Added by Jiajun Tang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Understanding interaction is an essential part of video action detection. We propose the Asynchronous Interaction Aggregation network (AIA) that leverages different interactions to boost action detection. There are two key designs in it: one is the Interaction Aggregation structure (IA) adopting a uniform paradigm to model and integrate multiple types of interaction; the other is the Asynchronous Memory Update algorithm (AMU) that enables us to achieve better performance by modeling very long-term interaction dynamically without huge computation cost. We provide empirical evidence to show that our network can gain notable accuracy from the integrative interactions and is easy to train end-to-end. Our method reports the new state-of-the-art performance on AVA dataset, with 3.7 mAP gain (12.6% relative improvement) on validation split comparing to our strong baseline. The results on dataset UCF101-24 and EPIC-Kitchens further illustrate the effectiveness of our approach. Source code will be made public at: https://github.com/MVIG-SJTU/AlphAction .



rate research

Read More

A common problem in the task of human-object interaction (HOI) detection is that numerous HOI classes have only a small number of labeled examples, resulting in training sets with a long-tailed distribution. The lack of positive labels can lead to low classification accuracy for these classes. Towards addressing this issue, we observe that there exist natural correlations and anti-correlations among human-object interactions. In this paper, we model the correlations as action co-occurrence matrices and present techniques to learn these priors and leverage them for more effective training, especially on rare classes. The efficacy of our approach is demonstrated experimentally, where the performance of our approach consistently improves over the state-of-the-art methods on both of the two leading HOI detection benchmark datasets, HICO-Det and V-COCO.
Spatio-temporal action detection in videos requires localizing the action both spatially and temporally in the form of an action tube. Nowadays, most spatio-temporal action detection datasets (e.g. UCF101-24, AVA, DALY) are annotated with action tubes that contain a single person performing the action, thus the predominant action detection models simply employ a person detection and tracking pipeline for localization. However, when the action is defined as an interaction between multiple objects, such methods may fail since each bounding box in the action tube contains multiple objects instead of one person. In this paper, we study the spatio-temporal action detection problem with multi-object interaction. We introduce a new dataset that is annotated with action tubes containing multi-object interactions. Moreover, we propose an end-to-end spatio-temporal action detection model that performs both spatial and temporal regression simultaneously. Our spatial regression may enclose multiple objects participating in the action. During test time, we simply connect the regressed bounding boxes within the predicted temporal duration using a simple heuristic. We report the baseline results of our proposed model on this new dataset, and also show competitive results on the standard benchmark UCF101-24 using only RGB input.
94 - Yan Li , Bin Ji , Xintian Shi 2020
Temporal modeling is key for action recognition in videos. It normally considers both short-range motions and long-range aggregations. In this paper, we propose a Temporal Excitation and Aggregation (TEA) block, including a motion excitation (ME) module and a multiple temporal aggregation (MTA) module, specifically designed to capture both short- and long-range temporal evolution. In particular, for short-range motion modeling, the ME module calculates the feature-level temporal differences from spatiotemporal features. It then utilizes the differences to excite the motion-sensitive channels of the features. The long-range temporal aggregations in previous works are typically achieved by stacking a large number of local temporal convolutions. Each convolution processes a local temporal window at a time. In contrast, the MTA module proposes to deform the local convolution to a group of sub-convolutions, forming a hierarchical residual architecture. Without introducing additional parameters, the features will be processed with a series of sub-convolutions, and each frame could complete multiple temporal aggregations with neighborhoods. The final equivalent receptive field of temporal dimension is accordingly enlarged, which is capable of modeling the long-range temporal relationship over distant frames. The two components of the TEA block are complementary in temporal modeling. Finally, our approach achieves impressive results at low FLOPs on several action recognition benchmarks, such as Kinetics, Something-Something, HMDB51, and UCF101, which confirms its effectiveness and efficiency.
Temporal action proposal generation aims to estimate temporal intervals of actions in untrimmed videos, which is a challenging yet important task in the video understanding field. The proposals generated by current methods still suffer from inaccurate temporal boundaries and inferior confidence used for retrieval owing to the lack of efficient temporal modeling and effective boundary context utilization. In this paper, we propose Temporal Context Aggregation Network (TCANet) to generate high-quality action proposals through local and global temporal context aggregation and complementary as well as progressive boundary refinement. Specifically, we first design a Local-Global Temporal Encoder (LGTE), which adopts the channel grouping strategy to efficiently encode both local and global temporal inter-dependencies. Furthermore, both the boundary and internal context of proposals are adopted for frame-level and segment-level boundary regressions, respectively. Temporal Boundary Regressor (TBR) is designed to combine these two regression granularities in an end-to-end fashion, which achieves the precise boundaries and reliable confidence of proposals through progressive refinement. Extensive experiments are conducted on three challenging datasets: HACS, ActivityNet-v1.3, and THUMOS-14, where TCANet can generate proposals with high precision and recall. By combining with the existing action classifier, TCANet can obtain remarkable temporal action detection performance compared with other methods. Not surprisingly, the proposed TCANet won the 1$^{st}$ place in the CVPR 2020 - HACS challenge leaderboard on temporal action localization task.
Person re-identification (reID) benefits greatly from deep convolutional neural networks (CNNs) which learn robust feature embeddings. However, CNNs are inherently limited in modeling the large variations in person pose and scale due to their fixed geometric structures. In this paper, we propose a novel network structure, Interaction-and-Aggregation (IA), to enhance the feature representation capability of CNNs. Firstly, Spatial IA (SIA) module is introduced. It models the interdependencies between spatial features and then aggregates the correlated features corresponding to the same body parts. Unlike CNNs which extract features from fixed rectangle regions, SIA can adaptively determine the receptive fields according to the input person pose and scale. Secondly, we introduce Channel IA (CIA) module which selectively aggregates channel features to enhance the feature representation, especially for smallscale visual cues. Further, IA network can be constructed by inserting IA blocks into CNNs at any depth. We validate the effectiveness of our model for person reID by demonstrating its superiority over state-of-the-art methods on three benchmark datasets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا