No Arabic abstract
The scarcity of spectrum resources in current wireless communication systems has sparked enormous research interest in the terahertz (THz) frequency band. This band is characterized by fundamentally different propagation properties resulting in different interference structures from what we have observed so far at lower frequencies. In this paper, we derive a new expression for the coverage probability of downlink transmission in THz communication systems within a three-dimensional (3D) environment. First, we establish a 3D propagation model which considers the molecular absorption loss, 3D directional antennas at both access points (APs) and user equipments (UEs), interference from nearby APs, and dynamic blockages caused by moving humans. Then, we develop a novel easy-to-use analytical framework based on the dominant interferer analysis to evaluate the coverage probability, the novelty of which lies in the incorporation of the instantaneous interference and the vertical height of THz devices. Our numerical results demonstrate the accuracy of our analysis and reveal that the coverage probability significantly decreases when the transmission distance increases. We also show the increasing blocker density and increasing AP density impose different impacts on the coverage performance when the UE-AP link of interest is in line-of-sight. We further show that the coverage performance improvement brought by increasing the antenna directivity at APs is higher than that brought by increasing the antenna directivity at UEs.
We conduct novel coverage probability analysis of downlink transmission in a three-dimensional (3D) terahertz (THz) communication (THzCom) system. In this system, we address the unique propagation properties in THz band, e.g., absorption loss, super-narrow directional beams, and high vulnerability towards blockage, which are fundamentally different from those at lower frequencies. Different from existing studies, we characterize the performance while considering the effect of 3D directional antennas at both access points (APs) and user equipments (UEs), and the joint impact of the blockage caused by the user itself, moving humans, and wall blockers in a 3D environment. Under such consideration, we develop a tractable analytical framework to derive a new expression for the coverage probability by examining the regions where dominant interferers (i.e., those can cause outage by themselves) can exist, and the average number of interferers existing in these regions. Aided by numerical results, we validate our analysis and reveal that ignoring the impact of the vertical heights of THz devices in the analysis leads to a substantial underestimation of the coverage probability. We also show that it is more worthwhile to increase the antenna directivity at the APs than at the UEs, to produce a more reliable THzCom system.
We derive new expressions for the connection probability and the average ergodic capacity to evaluate the performance achieved by multi-connectivity (MC) in an indoor ultra-wideband terahertz (THz) communication system. In this system, the user is affected by both self-blockage and dynamic human blockers. We first build up a three-dimensional propagation channel in this system to characterize the impact of molecular absorption loss and the shrinking usable bandwidth nature of the ultra-wideband THz channel. We then carry out new performance analysis for two MC strategies: 1) Closest line-of-sight (LOS) access point (AP) MC (C-MC), and 2) Reactive MC (R- MC). With numerical results, we validate our analysis and show the considerable improvement achieved by both MC strategies in the connection probability. We further show that the C-MC and R-MC strategies provide significant and marginal capacity gain relative to the single connectivity strategy, respectively, and increasing the number of the users associated APs imposes completely different affects on the capacity gain achieved by the C-MC and R-MC strategies. Additionally, we clarify that our analysis allows us to determine the optimal density of APs in order to maximize the capacity gain.
Mobility and blockage are two critical challenges in wireless transmission over millimeter-wave (mmWave) and Terahertz (THz) bands. In this paper, we investigate network massive multiple-input multiple-output (MIMO) transmission for mmWave/THz downlink in the presence of mobility and blockage. Considering the mmWave/THz propagation characteristics, we first propose to apply per-beam synchronization for network massive MIMO to mitigate the channel Doppler and delay dispersion effects. Accordingly, we establish a transmission model. We then investigate network massive MIMO downlink transmission strategies with only the statistical channel state information (CSI) available at the base stations (BSs), formulating the strategy design problem as an optimization problem to maximize the network sum-rate. We show that the beam domain is favorable to perform transmission, and demonstrate that BSs can work individually when sending signals to user terminals. Based on these insights, the network massive MIMO precoding design is reduced to a network sum-rate maximization problem with respect to beam domain power allocation. By exploiting the sequential optimization method and random matrix theory, an iterative algorithm with guaranteed convergence performance is further proposed for beam domain power allocation. Numerical results reveal that the proposed network massive MIMO transmission approach with the statistical CSI can effectively alleviate the blockage effects and provide mobility enhancement over mmWave and THz bands.
The intelligent reflective surface (IRS) technology has received many interests in recent years, thanks to its potential uses in future wireless communications, in which one of the promising use cases is to widen coverage, especially in the line-of-sight-blocked scenarios. Therefore, it is critical to analyze the corresponding coverage probability of IRS-aided communication systems. To our best knowledge, however, previous works focusing on this issue are very limited. In this paper, we analyze the coverage probability under the Rayleigh fading channel, taking the number and size of the array elements into consideration. We first derive the exact closed-form of coverage probability for the unit element. Afterward, with the method of moment matching, the approximation of the coverage probability can be formulated as the ratio of upper incomplete Gamma function and Gamma function, allowing an arbitrary number of elements. Finally, we comprehensively evaluate the impacts of essential factors on the coverage probability, such as the coefficient of fading channel, the number and size of the element, and the angle of incidence. Overall, the paper provides a succinct and general expression of coverage probability, which can be helpful in the performance evaluation and practical implementation of the IRS.
In this paper, we design and experiment a far-field wireless power transfer (WPT) architecture based on distributed antennas, so-called WPT DAS, that dynamically selects transmit antenna and frequency to increase the output dc power. Uniquely, spatial and frequency diversities are jointly exploited in the proposed WPT DAS with low complexity, low cost, and flexible deployment to combat the wireless fading channel. A numerical experiment is designed to show the benefits using antenna and frequency selections in spatially and frequency selective fading channels for single-user and multi-user cases. Accordingly, the proposed WPT DAS for single-user and two-user cases is prototyped. At the transmitter, we adopt antenna selection to exploit spatial diversity and adopt frequency selection to exploit frequency diversity. A low-complexity over-the-air limited feedback using an IEEE 802.15.4 RF interface is designed for antenna and frequency selections and reporting from the receiver to the transmitter. The proposed WPT DAS prototype is demonstrated in a real indoor environment. The measurements show that WPT DAS can boost the output dc power by up to 30 dB in single-user case and boost the sum of output dc power by up to 21.8 dB in two-user case and broaden the service coverage area in a low cost, low complexity, and flexible manner.