No Arabic abstract
Code is law is the funding principle of cryptocurrencies. The security, transferability, availability and other properties of a crypto-asset are determined by the code through which it is created. If code is open source, as it happens for most cryptocurrencies, this principle would prevent manipulations and grant transparency to users and traders. However, this approach considers cryptocurrencies as isolated entities thus neglecting possible connections between them. Here, we show that 4% of developers contribute to the code of more than one cryptocurrency and that the market reflects these cross-asset dependencies. In particular, we reveal that the first coding event linking two cryptocurrencies through a common developer leads to the synchronisation of their returns in the following months. Our results identify a clear link between the collaborative development of cryptocurrencies and their market behaviour. More broadly, our work reveals a so-far overlooked systemic dimension for the transparency of code-based ecosystems and we anticipate it will be of interest to researchers, investors and regulators.
Cryptocurrencies return cross-predictability and technological similarity yield information on risk propagation and market segmentation. To investigate these effects, we build a time-varying network for cryptocurrencies, based on the evolution of return cross-predictability and technological similarities. We develop a dynamic covariate-assisted spectral clustering method to consistently estimate the latent community structure of cryptocurrencies network that accounts for both sets of information. We demonstrate that investors can achieve better risk diversification by investing in cryptocurrencies from different communities. A cross-sectional portfolio that implements an inter-crypto momentum trading strategy earns a 1.08% daily return. By dissecting the portfolio returns on behavioral factors, we confirm that our results are not driven by behavioral mechanisms.
We investigate scaling and memory effects in return intervals between price volatilities above a certain threshold $q$ for the Japanese stock market using daily and intraday data sets. We find that the distribution of return intervals can be approximated by a scaling function that depends only on the ratio between the return interval $tau$ and its mean $<tau>$. We also find memory effects such that a large (or small) return interval follows a large (or small) interval by investigating the conditional distribution and mean return interval. The results are similar to previous studies of other markets and indicate that similar statistical features appear in different financial markets. We also compare our results between the period before and after the big crash at the end of 1989. We find that scaling and memory effects of the return intervals show similar features although the statistical properties of the returns are different.
The model describing market dynamics after a large financial crash is considered in terms of the stochastic differential equation of Ito. Physically, the model presents an overdamped Brownian particle moving in the nonstationary one-dimensional potential $U$ under the influence of the variable noise intensity, depending on the particle position $x$. Based on the empirical data the approximate estimation of the Kramers-Moyal coefficients $D_{1,2}$ allow to predicate quite definitely the behavior of the potential introduced by $D_1 = - partial U /partial x$ and the volatility $sim sqrt{D_2}$. It has been shown that the presented model describes well enough the best known empirical facts relative to the large financial crash of October 1987.
Non Fungible Tokens (NFTs) are digital assets that represent objects like art, collectible, and in-game items. They are traded online, often with cryptocurrency, and are generally encoded within smart contracts on a blockchain. Public attention towards NFTs has exploded in 2021, when the NFT market has experienced record sales, but little is known about the overall structure and evolution of the NFT market. Here, we analyse data concerning 6.1 million trades of 4.7 million NFTs between June 23, 2017 and April 27, 2021, obtained primarily from the Ethereum and WAX blockchains. First, we characterize the statistical properties of the market. Second, we build the network of interactions and show that traders typically specialize on NFTs associated with similar objects. Third, we cluster objects associated to NFTs according to their visual features and show that collections contain visually homogeneous objects. Finally, we investigate the predictability of NFT sales using simple machine learning algorithms and find that sale history and, secondarily, visual features are good predictors for price. We anticipate that these findings will inform further research on NFT production, adoption, and trading in different contexts.
In this study, we investigate the statistical properties of the returns and the trading volume. We show a typical example of power-law distributions of the return and of the trading volume. Next, we propose an interacting agent model of stock markets inspired from statistical mechanics [24] to explore the empirical findings. We show that as the interaction among the interacting traders strengthens both the returns and the trading volume present power-law behavior.