Do you want to publish a course? Click here

Constraining the radial drift of millimeter-sized grains in the protoplanetary disks in Lupus

69   0   0.0 ( 0 )
 Added by Leon Trapman
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent ALMA surveys of protoplanetary disks have shown that for most disks the extent of the gas emission is greater than the extent of the thermal emission of the millimeter-sized dust. Both line optical depth and the combined effect of radially dependent grain growth and radial drift may contribute to this observed effect. For a sample of 10 disks from the Lupus survey we investigate how well dust-based models without radial dust evolution reproduce the observed 12CO outer radius, and determine whether radial dust evolution is required to match the observed gas-dust size difference. We used the thermochemical code DALI to obtain 12CO synthetic emission maps and measure gas and dust outer radii (Rco, Rmm) using the same methods as applied to the observations, which were compared to observations on a source-by-source basis. For 5 disks we find that the observed gas-dust size difference is larger than the gas-dust size difference due to optical depth, indicating that we need both dust evolution and optical depth effects to explain the observed gas-dust size difference. For the other 5 disks the observed gas-dust size difference can be explained using only line optical depth effects. We also identify 6 disks not included in our initial sample but part of a survey of the same star-forming region that show significant 12CO emission beyond 4 x Rmm. These disks, for which no Rco is available, likely have gas-dust size differences greater than 4 and are difficult to explain without substantial dust evolution. Our results suggest that radial drift and grain growth are common features among both bright and fain disks. The effects of radial drift and grain growth can be observed in disks where the dust and gas radii are significantly different, while more detailed models and deeper observations are needed to see this effect in disks with smaller differences.



rate research

Read More

103 - M. Tazzari , L. Testi , A. Natta 2017
The formation of planets strongly depends on the total amount as well as on the spatial distribution of solids in protoplanetary disks. Thanks to the improvements in resolution and sensitivity provided by ALMA, measurements of the surface density of mm-sized grains are now possible on large samples of disks. Such measurements provide statistical constraints that can be used to inform our understanding of the initial conditions of planet formation. We analyze spatially resolved observations of 36 protoplanetary disks in the Lupus star forming complex from our ALMA survey at 890 micron, aiming to determine physical properties such as the dust surface density, the disk mass and size and to provide a constraint on the temperature profile. We fit the observations directly in the uv-plane using a two-layer disk model that computes the 890 micron emission by solving the energy balance at each disk radius. For 22 out of 36 protoplanetary disks we derive robust estimates of their physical properties. The sample covers stellar masses between ~0.1 and ~2 Solar masses, and we find no trend between the average disk temperatures and the stellar parameters. We find, instead, a correlation between the integrated sub-mm flux (a proxy for the disk mass) and the exponential cut-off radii (a proxy of the disk size) of the Lupus disks. Comparing these results with observations at similar angular resolution of Taurus-Auriga/Ophiuchus disks found in literature and scaling them to the same distance, we observe that the Lupus disks are generally fainter and larger at a high level of statistical significance. Considering the 1-2 Myr age difference between these regions, it is possible to tentatively explain the offset in the disk mass/disk size relation with viscous spreading, however with the current measurements other mechanisms cannot be ruled out.
72 - E. Sanchis , L. Testi , A. Natta 2021
We perform a comprehensive demographic study of the CO extent relative to dust of the disk population in the Lupus clouds, in order to find indications of dust evolution and possible correlations with other properties. We increase up to 42 the number of disks of the region with measured CO and dust sizes ($R_{mathrm{CO}}$, $R_{mathrm{dust}}$) from observations with the Atacama Large Millimeter/submillimeter Array (ALMA). The sizes are obtained from modeling the ${^{12}}$CO $J = 2-1$ line emission and continuum emission at $sim 0.89$ mm with an empirical function (Nuker profile or Gaussian function). The CO emission is more extended than the dust continuum, with a $R_{68%}^{mathrm{CO}}$/$R_{68%}^{mathrm{dust}}$ median value of 2.5, for the entire population and for a sub-sample with high completeness. 6 disks, around $15%$ of the Lupus disk population have a size ratio above 4. Based on thermo-chemical modeling, this value can only be explained if the disk has undergone grain growth and radial drift. These disks do not have unusual properties in terms of stellar mass ($M_{star}$), disk mass ($M_{mathrm{disk}}$), CO and dust sizes ($R_{mathrm{CO}}$, $R_{mathrm{dust}}$), and mass accretion. We search for correlations between the size ratio and $M_{star}$, $M_{mathrm{disk}}$, $R_{mathrm{CO}}$ and $R_{mathrm{dust}}$: only a weak monotonic anti-correlation with the $R_{mathrm{dust}}$ is found. The lack of strong correlations is remarkable and suggests that the bulk of the population may be in a similar evolutionary stage, independent of the stellar and disk properties. These results should be further investigated, since the optical depth difference between CO and dust continuum may play a role in the inferred size ratios. Lastly, the CO emission for the majority of the disks is consistent with optically thick emission and an average CO temperature of around 30 K.
We present the first ALMA survey of protoplanetary discs at 3 mm, targeting 36 young stellar objects in the Lupus star-forming region with deep observations (sensitivity 20-50 microJy/beam) at ~0.35 resolution (~50 au). Building on previous ALMA surveys at 0.89 and 1.3 mm that observed the complete sample of Class II discs in Lupus at a comparable resolution, we aim to assess the level of grain growth in the relatively young Lupus region. We measure 3 mm integrated fluxes, from which we derive disc-averaged 1-3 mm spectral indices. We find that the mean spectral index of the observed Lupus discs is $alpha_mathrm{1-3 mm}=2.23pm0.06$, in all cases $alpha_mathrm{1-3 mm}<3.0$, with a tendency for larger spectral indices in the brightest discs and in transition discs. Furthermore, we find that the distribution of spectral indices in Lupus discs is statistically indistinguishable from that of the Taurus and Ophiuchus star-forming regions. Assuming the emission is optically thin, the low values $alpha_mathrm{1-3 mm}leq 2.5$ measured for most discs can be interpreted with the presence of grains larger than 1 mm. The observations of the faint discs in the sample can be explained without invoking the presence of large grains, namely through a mixture of optically thin and optically thick emission from small grains. However, the bright (and typically large) discs do inescapably require the presence of millimeter-sized grains in order to have realistic masses. Based on a disc mass argument, our results challenge previous claims that the presence of optically thick sub-structures may be a universal explanation for the empirical millimeter size-luminosity correlation observed at 0.89 mm.
The $sigma$ Orionis cluster is important for studying protoplanetary disk evolution, as its intermediate age ($sim$3-5 Myr) is comparable to the median disk lifetime. We use ALMA to conduct a high-sensitivity survey of dust and gas in 92 protoplanetary disks around $sigma$ Orionis members with $M_{ast}gtrsim0.1 M_{odot}$. Our observations cover the 1.33 mm continuum and several CO $J=2-1$ lines: out of 92 sources, we detect 37 in the mm continuum and six in $^{12}$CO, three in $^{13}$CO, and none in C$^{18}$O. Using the continuum emission to estimate dust mass, we find only 11 disks with $M_{rm dust}gtrsim10 M_{oplus}$, indicating that after only a few Myr of evolution most disks lack sufficient dust to form giant planet cores. Stacking the individually undetected continuum sources limits their average dust mass to 5$times$ lower than that of the faintest detected disk, supporting theoretical models that indicate rapid dissipation once disk clearing begins. Comparing the protoplanetary disk population in $sigma$ Orionis to those of other star-forming regions supports the steady decline in average dust mass and the steepening of the $M_{rm dust}$-$M_{ast}$ relation with age; studying these evolutionary trends can inform the relative importance of different disk processes during key eras of planet formation. External photoevaporation from the central O9 star is influencing disk evolution throughout the region: dust masses clearly decline with decreasing separation from the photoionizing source, and the handful of CO detections exist at projected separations $>1.5$ pc. Collectively, our findings indicate that giant planet formation is inherently rare and/or well underway by a few Myr of age.
210 - Kamber R. Schwarz 2018
CO is commonly used as a tracer of the total gas mass in both the interstellar medium and in protoplanetary disks. Recently there has been much debate about the utility of CO as a mass tracer in disks. Observations of CO in protoplanetary disks reveal a range of CO abundances, with measurements of low CO to dust mass ratios in numerous systems. One possibility is that carbon is removed from CO via chemistry. However, the full range of physical conditions conducive to this chemical reprocessing is not well understood. We perform a systematic survey of the time dependent chemistry in protoplanetary disks for 198 models with a range of physical conditions. We varying dust grain size distribution, temperature, comic ray and X-ray ionization rate, disk mass, and initial water abundance, detailing what physical conditions are necessary to activate the various CO depletion mechanisms in the warm molecular layer. We focus our analysis on the warm molecular layer in two regions: the outer disk (100 au) well outside the CO snowline and the inner disk (19 au) just inside the midplane CO snow line. After 1 Myr, we find that the majority of models have a CO abundance relative to H$_2$ less than $10^{-4}$ in the outer disk, while an abundance less than $10^{-5}$ requires the presence of cosmic rays. Inside the CO snow line, significant depletion of CO only occurs in models with a high cosmic ray rate. If cosmic rays are not present in young disks it is difficult to chemically remove carbon from CO. Additionally, removing water prior to CO depletion impedes the chemical processing of CO. Chemical processing alone cannot explain current observations of low CO abundances. Other mechanisms must also be involved.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا