Do you want to publish a course? Click here

D4RL: Datasets for Deep Data-Driven Reinforcement Learning

92   0   0.0 ( 0 )
 Added by Justin Fu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The offline reinforcement learning (RL) setting (also known as full batch RL), where a policy is learned from a static dataset, is compelling as progress enables RL methods to take advantage of large, previously-collected datasets, much like how the rise of large datasets has fueled results in supervised learning. However, existing online RL benchmarks are not tailored towards the offline setting and existing offline RL benchmarks are restricted to data generated by partially-trained agents, making progress in offline RL difficult to measure. In this work, we introduce benchmarks specifically designed for the offline setting, guided by key properties of datasets relevant to real-world applications of offline RL. With a focus on dataset collection, examples of such properties include: datasets generated via hand-designed controllers and human demonstrators, multitask datasets where an agent performs different tasks in the same environment, and datasets collected with mixtures of policies. By moving beyond simple benchmark tasks and data collected by partially-trained RL agents, we reveal important and unappreciated deficiencies of existing algorithms. To facilitate research, we have released our benchmark tasks and datasets with a comprehensive evaluation of existing algorithms, an evaluation protocol, and open-source examples. This serves as a common starting point for the community to identify shortcomings in existing offline RL methods and a collaborative route for progress in this emerging area.



rate research

Read More

We identify an implicit under-parameterization phenomenon in value-based deep RL methods that use bootstrapping: when value functions, approximated using deep neural networks, are trained with gradient descent using iterated regression onto target values generated by previous instances of the value network, more gradient updates decrease the expressivity of the current value network. We characterize this loss of expressivity in terms of a drop in the rank of the learned value network features, and show that this corresponds to a drop in performance. We demonstrate this phenomenon on widely studies domains, including Atari and Gym benchmarks, in both offline and online RL settings. We formally analyze this phenomenon and show that it results from a pathological interaction between bootstrapping and gradient-based optimization. We further show that mitigating implicit under-parameterization by controlling rank collapse improves performance.
Many real-world sequential decision making problems are partially observable by nature, and the environment model is typically unknown. Consequently, there is great need for reinforcement learning methods that can tackle such problems given only a stream of incomplete and noisy observations. In this paper, we propose deep variational reinforcement learning (DVRL), which introduces an inductive bias that allows an agent to learn a generative model of the environment and perform inference in that model to effectively aggregate the available information. We develop an n-step approximation to the evidence lower bound (ELBO), allowing the model to be trained jointly with the policy. This ensures that the latent state representation is suitable for the control task. In experiments on Mountain Hike and flickering Atari we show that our method outperforms previous approaches relying on recurrent neural networks to encode the past.
Off-policy learning allows us to learn about possible policies of behavior from experience generated by a different behavior policy. Temporal difference (TD) learning algorithms can become unstable when combined with function approximation and off-policy sampling - this is known as the deadly triad. Emphatic temporal difference (ETD($lambda$)) algorithm ensures convergence in the linear case by appropriately weighting the TD($lambda$) updates. In this paper, we extend the use of emphatic methods to deep reinforcement learning agents. We show that naively adapting ETD($lambda$) to popular deep reinforcement learning algorithms, which use forward view multi-step returns, results in poor performance. We then derive new emphatic algorithms for use in the context of such algorithms, and we demonstrate that they provide noticeable benefits in small problems designed to highlight the instability of TD methods. Finally, we observed improved performance when applying these algorithms at scale on classic Atari games from the Arcade Learning Environment.
Heuristic algorithms such as simulated annealing, Concorde, and METIS are effective and widely used approaches to find solutions to combinatorial optimization problems. However, they are limited by the high sample complexity required to reach a reasonable solution from a cold-start. In this paper, we introduce a novel framework to generate better initial solutions for heuristic algorithms using reinforcement learning (RL), named RLHO. We augment the ability of heuristic algorithms to greedily improve upon an existing initial solution generated by RL, and demonstrate novel results where RL is able to leverage the performance of heuristics as a learning signal to generate better initialization. We apply this framework to Proximal Policy Optimization (PPO) and Simulated Annealing (SA). We conduct a series of experiments on the well-known NP-complete bin packing problem, and show that the RLHO method outperforms our baselines. We show that on the bin packing problem, RL can learn to help heuristics perform even better, allowing us to combine the best parts of both approaches.
Reinforcement learning provides a general framework for flexible decision making and control, but requires extensive data collection for each new task that an agent needs to learn. In other machine learning fields, such as natural language processing or computer vision, pre-training on large, previously collected datasets to bootstrap learning for new tasks has emerged as a powerful paradigm to reduce data requirements when learning a new task. In this paper, we ask the following question: how can we enable similarly useful pre-training for RL agents? We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials from a wide range of previously seen tasks, and we show how this learned prior can be used for rapidly learning new tasks without impeding the RL agents ability to try out novel behaviors. We demonstrate the effectiveness of our approach in challenging robotic manipulation domains involving image observations and sparse reward functions, where our method outperforms prior works by a substantial margin.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا