No Arabic abstract
Understanding the shape of a scene from a single color image is a formidable computer vision task. However, most methods aim to predict the geometry of surfaces that are visible to the camera, which is of limited use when planning paths for robots or augmented reality agents. Such agents can only move when grounded on a traversable surface, which we define as the set of classes which humans can also walk over, such as grass, footpaths and pavement. Models which predict beyond the line of sight often parameterize the scene with voxels or meshes, which can be expensive to use in machine learning frameworks. We introduce a model to predict the geometry of both visible and occluded traversable surfaces, given a single RGB image as input. We learn from stereo video sequences, using camera poses, per-frame depth and semantic segmentation to form training data, which is used to supervise an image-to-image network. We train models from the KITTI driving dataset, the indoor Matterport dataset, and from our own casually captured stereo footage. We find that a surprisingly low bar for spatial coverage of training scenes is required. We validate our algorithm against a range of strong baselines, and include an assessment of our predictions for a path-planning task.
In this paper, we propose a novel, effective and fast method to obtain a color illumination invariant and shadow-free image from a single outdoor image. Different from state-of-the-art methods for shadow-free image that either need shadow detection or statistical learning, we set up a linear equation set for each pixel value vector based on physically-based shadow invariants, deduce a pixel-wise orthogonal decomposition for its solutions, and then get an illumination invariant vector for each pixel value vector on an image. The illumination invariant vector is the unique particular solution of the linear equation set, which is orthogonal to its free solutions. With this illumination invariant vector and Lab color space, we propose an algorithm to generate a shadow-free image which well preserves the texture and color information of the original image. A series of experiments on a diverse set of outdoor images and the comparisons with the state-of-the-art methods validate our method.
In this paper, we present a learning-based approach for recovering the 3D geometry of human head from a single portrait image. Our method is learned in an unsupervised manner without any ground-truth 3D data. We represent the head geometry with a parametric 3D face model together with a depth map for other head regions including hair and ear. A two-step geometry learning scheme is proposed to learn 3D head reconstruction from in-the-wild face images, where we first learn face shape on single images using self-reconstruction and then learn hair and ear geometry using pairs of images in a stereo-matching fashion. The second step is based on the output of the first to not only improve the accuracy but also ensure the consistency of overall head geometry. We evaluate the accuracy of our method both in 3D and with pose manipulation tasks on 2D images. We alter pose based on the recovered geometry and apply a refinement network trained with adversarial learning to ameliorate the reprojected images and translate them to the real image domain. Extensive evaluations and comparison with previous methods show that our new method can produce high-fidelity 3D head geometry and head pose manipulation results.
Intrinsic image decomposition, which is an essential task in computer vision, aims to infer the reflectance and shading of the scene. It is challenging since it needs to separate one image into two components. To tackle this, conventional methods introduce various priors to constrain the solution, yet with limited performance. Meanwhile, the problem is typically solved by supervised learning methods, which is actually not an ideal solution since obtaining ground truth reflectance and shading for massive general natural scenes is challenging and even impossible. In this paper, we propose a novel unsupervised intrinsic image decomposition framework, which relies on neither labeled training data nor hand-crafted priors. Instead, it directly learns the latent feature of reflectance and shading from unsupervised and uncorrelated data. To enable this, we explore the independence between reflectance and shading, the domain invariant content constraint and the physical constraint. Extensive experiments on both synthetic and real image datasets demonstrate consistently superior performance of the proposed method.
Underwater images suffer from color casts and low contrast due to wavelength- and distance-dependent attenuation and scattering. To solve these two degradation issues, we present an underwater image enhancement network via medium transmission-guided multi-color space embedding, called Ucolor. Concretely, we first propose a multi-color space encoder network, which enriches the diversity of feature representations by incorporating the characteristics of different color spaces into a unified structure. Coupled with an attention mechanism, the most discriminative features extracted from multiple color spaces are adaptively integrated and highlighted. Inspired by underwater imaging physical models, we design a medium transmission (indicating the percentage of the scene radiance reaching the camera)-guided decoder network to enhance the response of the network towards quality-degraded regions. As a result, our network can effectively improve the visual quality of underwater images by exploiting multiple color spaces embedding and the advantages of both physical model-based and learning-based methods. Extensive experiments demonstrate that our Ucolor achieves superior performance against state-of-the-art methods in terms of both visual quality and quantitative metrics.
In this paper, we consider the problem to automatically reconstruct garment and body shapes from a single near-front view RGB image. To this end, we propose a layered garment representation on top of SMPL and novelly make the skinning weight of garment independent of the body mesh, which significantly improves the expression ability of our garment model. Compared with existing methods, our method can support more garment categories and recover more accurate geometry. To train our model, we construct two large scale datasets with ground truth body and garment geometries as well as paired color images. Compared with single mesh or non-parametric representation, our method can achieve more flexible control with separate meshes, makes applications like re-pose, garment transfer, and garment texture mapping possible. Code and some data is available at https://github.com/jby1993/BCNet.