No Arabic abstract
Improper ferroelectrics are described by two order parameters: a primary one, driving a transition to long-range distortive, magnetic or otherwise non-electric order, and the electric polarization, which is induced by the primary order parameter as a secondary, complementary effect. Using low-temperature scanning probe microscopy, we show that improper ferroelectric domains in YMnO$_3$ can be locally switched by electric field poling. However, subsequent temperature changes restore the as-grown domain structure as determined by the primary lattice distortion. The backswitching is explained by uncompensated bound charges occuring at the newly written domain walls due to the lack of mobile screening charges at low temperature. Thus, the polarization of improper ferroelectrics is in many ways subject to the same electrostatics as in their proper counterparts, yet complemented by additional functionalities arising from the primary order parameter. Tailoring the complex interplay between primary order parameter, polarization, and electrostatics is therefore likely to result in novel functionalities specific to improper ferroelectrics.
We report on multiple fundamental qualitative improvements in the growth of improper ferroelectric hexagonal YMnO$_3$ (YMO) thin films and heterostructures by pulsed laser deposition (PLD). By a combination of pre-growth substrate annealing and low-energy-fluence PLD, we obtain a two-dimensional growth mode of the YMO films on yttria-stabilized zirconia (YSZ) with ultralow roughness and devoid of misoriented nanocrystalline inclusions. By inserting a sacrificial manganite layer capped with conducting indium-tin oxide between the substrate and the final film, the latter is grown in a fully lattice-relaxed mode and, thus, without any misfit dislocations while maintaining the extraordinary flatness of the films grown directly on pre-annealed YSZ. This provides a template for the fabrication of heterostructures based on hexagonal manganites as promising class of multiferroics with improper room-temperature ferroelectricity and the implementation of these into technologically relevant epitaxial metal|ferroelectric-type multilayers.
Focused ion beam (FIB) and scanning electron microscopy (SEM) are used to reversibly switch improper ferroelectric domains in the hexagonal manganite ErMnO$_3$. Surface charging is achieved by local ion (positive charging) and electron (positive and negative charging) irradiation, which allows controlled polarization switching without the need for electrical contacts. Polarization cycling reveals that the domain walls tend to return to the equilibrium configuration obtained in the as-grown state. The electric field response of sub-surface domains is studied by FIB cross-sectioning, revealing the 3D switching behavior. The results clarify how the polarization reversal in hexagonal manganites progresses at the level of domains, resolving both domain wall movements and the nucleation and growth of new domains. Our FIB-SEM based switching approach is applicable to all ferroelectrics where a sufficiently large electric field can be built up via surface charging, facilitating contact-free high-resolution studies of the domain and domain wall response to electric fields in 3D.
The successful theoretical prediction and experimental demonstration of hybrid improper ferroelectricity (HIF) provides a new pathway to couple octahedral rotations, ferroelectricity, and magnetism in complex materials. To enable technological applications, a HIF with a small coercive field is desirable. We successfully grow Sr3Sn2O7 single crystals, and discover that they exhibit the smallest electric coercive field at room temperature among all known HIFs. Furthermore, we demonstate that a small external stress can repeatedly erase and re-generate ferroelastic domains. In addition, using in-plane piezo-response force microscopy, we characterize abundant charged and neutral domain walls. The observed small electrical and mechanical coercive field values are in accordance with the results of our first-principles calculations on Sr3Sn2O7, which show low energy barriers for both 90{deg} and 180{deg} polarization switching compared to those in other experimentally demonstrated HIFs. Our findings represent an advance towards the possible technological implemetation of functional HIFs.
Ferroic materials are well known to exhibit heterogeneity in the form of domain walls. Understanding the properties of these boundaries is crucial for controlling functionality with external stimuli and for realizing their potential for ultra-low power memory and logic devices as well as novel computing architectures. In this work, we employ synchrotron-based near-field infrared nano-spectroscopy to reveal the vibrational properties of ferroelastic (90$^circ$ ferroelectric) domain walls in the hybrid improper ferroelectric Ca$_3$Ti$_2$O$_7$. By locally mapping the Ti-O stretching and Ti-O-Ti bending modes, we reveal how structural order parameters rotate across a wall. Thus, we link observed near-field amplitude changes to underlying structural modulations and test ferroelectric switching models against real space measurements of local structure. This initiative opens the door to broadband infrared nano-imaging of heterogeneity in ferroics.
We used inelastic neutron scattering to show that well below its N{e}el temperature, $T_{rm N}$, the two-dimensional (2D) XY nearly-triangular antiferromagnet YMnO$_{3}$ has a prominent {it central peak} associated with 2D antiferromagnetic fluctuations with a characteristic life time of 0.55(5) ps, coexisting with the conventional long-lived spin-waves. Existence of the two time scales suggests competition between the N{e}el phase favored by weak interplane interactions, and the Kosterlitz-Thouless phase intrinsic to the 2D XY spin system.