Do you want to publish a course? Click here

Increasing efficiency of high numerical aperture metasurfaces using the grating averaging technique

67   0   0.0 ( 0 )
 Added by Amir Arbabi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the important advantages of optical metasurfaces over conventional diffractive optical elements is their capability to efficiently deflect light by large angles. However, metasurfaces are conventionally designed using approaches that are optimal for small deflection angles and their performance for designing high numerical aperture devices is not well quantified. Here we introduce and apply a technique for the estimation of the efficiency of high numerical aperture metasurfaces. The technique is based on a particular coherent averaging of diffraction coefficients of periodic blazed gratings and can be used to compare the performance of different metasurface designs in implementing high numerical aperture devices. Unlike optimization-based methods that rely on full-wave simulations and are only practicable in designing small metasurfaces, the gradient averaging technique allows for the design of arbitrarily large metasurfaces. Using this technique, we identify an unconventional metasurface design and experimentally demonstrate a metalens with a numerical aperture of 0.78 and a measured focusing efficiency of 77%. The grating averaging is a versatile technique applicable to many types of gradient metasurfaces, thus enabling highly efficient metasurface components and systems.



rate research

Read More

The design of compact optical systems with large field of view has been difficult due to the requirement of many elements or a curved focal plane to reduce off-axis aberration. We propose a multi-aperture lens design to effectively resolve these issues. Metagrating-based deflectors are placed near entrance pupils of multi-aperture lens array to enhance field of view. A systematic design method is given in details. In design examples, a $pm$80$^circ$ field of view using only two planar optical elements is achieved. Also, the system is extremely compact with total track lengths an order of magnitude smaller than conventional fish-eye lenses, while the imaging performance is comparable with conventional designs.
A new numerical method is developed for solution of the Gelfand - Levitan - Marchenko inverse scattering integral equations. The method is based on the fast inversion procedure of a Toeplitz Hermitian matrix and special bordering technique. The method is highly competitive with the known discrete layer peeling method in speed and exceeds it noticeably in accuracy at high reflectance.
80 - Zi-Lan Deng , Shuang Zhang , 2016
Recently, an achromatic metasurface was successfully demonstrated to deflect light of multiple wavelengths in the same direction and it was further applied to the design of planar lenses without chromatic aberrations [Science, 347, 1342(2015)]. However, such metasurface can only work for normal incidence and exhibit low conversion efficiency. Here, we present an ultrawide-angle and high-efficiency metasurface without chromatic aberration for wavefront shaping in visible range. The metasurface is constructed by multiple metallic nano-groove gratings, which support enhanced diffractions for an ultrawide incident angle range from 10o to 80o due to the excitations of localized gap plasmon modes at different resonance wavelengths. Incident light at these resonance wavelengths can be efficiently diffracted into the same direction with complete suppression of the specular reflection. This approach is applied to the design of an achromatic flat lens for focusing light of different wavelengths into the same position. Our findings provide a facile way to design various achromatic flat optical elements for imaging and display applications.
Actively tunable and reconfigurable wavefront shaping by optical metasurfaces poses a significant technical challenge often requiring unconventional materials engineering and nanofabrication. Most wavefront-shaping metasurfaces can be considered local in that their operation depends on the responses of individual meta-units. In contrast, nonlocal metasurfaces function based on the modes supported by many adjacent meta-units, resulting in sharp spectral features but typically no spatial control of the outgoing wavefront. Recently, nonlocal metasurfaces based on quasi-bound states in the continuum have been shown to produce designer wavefronts only across the narrow bandwidth of the supported Fano resonance. Here, we leverage the enhanced light-matter interactions associated with sharp Fano resonances to explore the active modulation of optical spectra and wavefronts by refractive index tuning and mechanical stretching. We experimentally demonstrate proof-of-principle thermo-optically tuned nonlocal metasurfaces made of silicon, and numerically demonstrate nonlocal metasurfaces that thermo-optically switch between distinct wavefront shapes. This meta-optics platform for thermally reconfigurable wavefront-shaping requires neither unusual materials and fabrication nor active control of individual meta-units.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا