Do you want to publish a course? Click here

Technical Comment on The dark matter interpretation of the 3.5-keV line is inconsistent with blank-sky observations

72   0   0.0 ( 0 )
 Added by Kevork Abazajian
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

I show that model dependencies in the analysis by Dessert, Rodd & Safdi (2020) relax their claimed constraint by a factor of ~20. After including conservative model choices, the derived limits are comparable to or slightly better than limits from previous searches. Further model tests and expansion of the data energy may enhance or relax sensitivity of the methodology.



rate research

Read More

The recent paper by Jeltema & Profumo(2014) claims that contributions from ion{K}{18} and ion{Cl}{17} lines can explain the unidentified emission line found by Bulbul et al 2014 and also by Boyarsky et al, 2014a, 2014b. We show that their analysis relies upon incorrect atomic data and inconsistent spectroscopic modeling. We address these points and summarize in the appendix the correct values for the relevant atomic data from AtomDB.
We present a comprehensive search for the 3.5 keV line, using $sim$51 Ms of archival Chandra observations peering through the Milky Ways Dark Matter Halo from across the entirety of the sky, gathered via the Chandra Source Catalog Release 2.0. We consider the datas radial distribution, organizing observations into four data subsets based on angular distance from the Galactic Center. All data is modeled using both background-subtracted and background-modeled approaches to account for the particle instrument background, demonstrating statistical limitations of the currently-available $sim$1 Ms of particle background data. A non-detection is reported in the total data set, allowing us to set an upper-limit on 3.5 keV line flux and constrain the sterile neutrino dark matter mixing angle. The upper-limit on sin$^2$(2$theta$) is $2.58 times 10^{-11}$ (though systematic uncertainty may increase this by a factor of $sim$2), corresponding to the upper-limit on 3.5 keV line flux of $2.34 times 10^{-7}$ ph s$^{-1}$ cm$^{-2}$. These limits show consistency with recent constraints and several prior detections. Non-detections are reported in all radial data subsets, allowing us to constrain the spatial profile of 3.5 keV line intensity, which does not conclusively differ from Navarro-Frenk-White predictions. Thus, while offering heavy constraints, we do not entirely rule out the sterile neutrino dark matter scenario or the more general decaying dark matter hypothesis for the 3.5 keV line. We have also used the non-detection of any unidentified emission lines across our continuum to further constrain the sterile neutrino parameter space.
There have been several reports of a detection of an unexplained excess of X-ray emission at $simeq$ 3.5 keV in astrophysical systems. One interpretation of this excess is the decay of sterile neutrino dark matter. The most influential study to date analysed 73 clusters observed by the XMM-Newton satellite. We explore evidence for a $simeq$ 3.5 keV excess in the XMM-PN spectra of 117 redMaPPer galaxy clusters ($0.1 < z < 0.6$). In our analysis of individual spectra, we identify three systems with an excess of flux at $simeq$ 3.5 keV. In one case (XCS J0003.3+0204) this excess may result from a discrete emission line. None of these systems are the most dark matter dominated in our sample. We group the remaining 114 clusters into four temperature ($T_{rm X}$) bins to search for an increase in $simeq$ 3.5 keV flux excess with $T_{rm X}$ - a reliable tracer of halo mass. However, we do not find evidence of a significant excess in flux at $simeq$ 3.5 keV in any $T_{rm X}$ bins. To maximise sensitivity to a potentially weak dark matter decay feature at $simeq$ 3.5 keV, we jointly fit 114 clusters. Again, no significant excess is found at $simeq$ 3.5 keV. We estimate the upper limit of an undetected emission line at $simeq$ 3.5 keV to be $2.41 times 10^{-6}$ photons cm$^{-2}$ s$^{-1}$, corresponding to a mixing angle of $sin^2(2theta)=4.4 times 10^{-11}$, lower than previous estimates from cluster studies. We conclude that a flux excess at $simeq$ 3.5 keV is not a ubiquitous feature in clusters and therefore unlikely to originate from sterile neutrino dark matter decay.
Context. Recent findings of line emission at 3.5 keV in both individual and stacked X-ray spectra of galaxy clusters have been speculated to have dark matter origin. Aims. If the origin is indeed dark matter, the emission line is expected to be detectable from the Milky Way dark matter halo. Methods. We perform a line search in public Chandra X-ray observations of the region near Sgr A*. We derive upper limits on the line emission flux for the 2.0-9.0 keV energy interval and discuss their potential physical interpretations including various scenarios of decaying and annihilating dark matter. Results. While find no clear evidence for its presence, the upper flux limits are not inconsistent with the recent detections for conservative mass profiles of the Milky Way. Conclusions. The results depends mildly on the spectral modelling and strongly on the choice of dark matter profile.
Previous detections of an X-ray emission line near 3.5 keV in galaxy clusters and other dark matter-dominated objects have been interpreted as observational evidence for the decay of sterile neutrino dark matter. Motivated by this, we report on a search for a 3.5 keV emission line from the Milky Ways galactic dark matter halo with HaloSat. As a single pixel, collimated instrument, HaloSat observations are impervious to potential systematic effects due to grazing incidence reflection and CCD pixelization, and thus may offer a check on possible instrumental systematic errors in previous analyses. We report non-detections of a $sim$3.5 keV emission line in four HaloSat observations near the Galactic Center. In the context of the sterile neutrino decay interpretation of the putative line feature, we provide 90% confidence level upper limits on the 3.5 keV line flux and 7.1 keV sterile neutrino mixing angle: $F leq 0.077$ ph cm$^{-2}$ s$^{-1}$ sr$^{-1}$ and $sin^2(2theta) leq 4.25 times 10^{-11}$. The HaloSat mixing angle upper limit was calculated using a modern parameterization of the Milky Ways dark matter distribution, and in order to compare with previous limits, we also report the limit calculated using a common historical model. The HaloSat mixing angle upper limit places constraints on a number of previous mixing angle estimates derived from observations of the Milky Ways dark matter halo and galaxy clusters, and excludes several previous detections of the line. The upper limits cannot, however, entirely rule out the sterile neutrino decay interpretation of the 3.5 keV line feature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا