Do you want to publish a course? Click here

Software-Defined Network for End-to-end Networked Science at the Exascale

55   0   0.0 ( 0 )
 Added by Xi Yang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Domain science applications and workflow processes are currently forced to view the network as an opaque infrastructure into which they inject data and hope that it emerges at the destination with an acceptable Quality of Experience. There is little ability for applications to interact with the network to exchange information, negotiate performance parameters, discover expected performance metrics, or receive status/troubleshooting information in real time. The work presented here is motivated by a vision for a new smart network and smart application ecosystem that will provide a more deterministic and interactive environment for domain science workflows. The Software-Defined Network for End-to-end Networked Science at Exascale (SENSE) system includes a model-based architecture, implementation, and deployment which enables automated end-to-end network service instantiation across administrative domains. An intent based interface allows applications to express their high-level service requirements, an intelligent orchestrator and resource control systems allow for custom tailoring of scalability and real-time responsiveness based on individual application and infrastructure operator requirements. This allows the science applications to manage the network as a first-class schedulable resource as is the current practice for instruments, compute, and storage systems. Deployment and experiments on production networks and testbeds have validated SENSE functions and performance. Emulation based testing verified the scalability needed to support research and education infrastructures. Key contributions of this work include an architecture definition, reference implementation, and deployment. This provides the basis for further innovation of smart network services to accelerate scientific discovery in the era of big data, cloud computing, machine learning and artificial intelligence.



rate research

Read More

69 - Qiang Liu , Tao Han , 2019
There is a pressing need to interconnect physical systems such as power grid and vehicles for efficient management and safe operations. Owing to the diverse features of physical systems, there is hardly a one-size-fits-all networking solution for developing cyber-physical systems. Network slicing is a promising technology that allows network operators to create multiple virtual networks on top of a shared network infrastructure. These virtual networks can be tailored to meet the requirements of different cyber-physical systems. However, it is challenging to design secure network slicing solutions that can efficiently create end-to-end network slices for diverse cyber-physical systems. In this article, we discuss the challenges and security issues of network slicing, study learning-assisted network slicing solutions, and analyze their performance under the denial-of-service attack. We also present a design and implementation of a small-scale testbed for evaluating the network slicing solutions.
Recently, Internet service providers (ISPs) have gained increased flexibility in how they configure their in-ground optical fiber into an IP network. This greater control has been made possible by (i) the maturation of software defined networking (SDN), and (ii) improvements in optical switching technology. Whereas traditionally, at network design time, each IP link was assigned a fixed optical path and bandwidth, modern colorless and directionless Reconfigurable Optical Add/Drop Multiplexers (CD ROADMs) allow a remote SDN controller to remap the IP topology to the optical underlay on the fly. Consequently, ISPs face new opportunities and challenges in the design and operation of their backbone networks. Specifically, ISPs must determine how best to design their networks to take advantage of the new capabilities; they need an automated way to generate the least expensive network design that still delivers all offered traffic, even in the presence of equipment failures. This problem is difficult because of the physical constraints governing the placement of optical regenerators, a piece of optical equipment necessary for maintaining an optical signal over long stretches of fiber. As a solution, we present an integer linear program (ILP) which (1) solves the equipment-placement network design problem; (2) determines the optimal mapping of IP links to the optical infrastructure for any given failure scenario; and (3) determines how best to route the offered traffic over the IP topology. To scale to larger networks, we also describe an efficient heuristic that finds nearly optimal network designs in a fraction of the time. Further, in our experiments our ILP offers cost savings of up to 29% compared to traditional network design techniques.
Software defined networking (SDN) has emerged as a promising paradigm for making the control of communication networks flexible. SDN separates the data packet forwarding plane, i.e., the data plane, from the control plane and employs a central controller. Network virtualization allows the flexible sharing of physical networking resources by multiple users (tenants). Each tenant runs its own applications over its virtual network, i.e., its slice of the actual physical network. The virtualization of SDN networks promises to allow networks to leverage the combined benefits of SDN networking and network virtualization and has therefore attracted significant research attention in recent years. A critical component for virtualizing SDN networks is an SDN hypervisor that abstracts the underlying physical SDN network into multiple logically isolated virtual SDN networks (vSDNs), each with its own controller. We comprehensively survey hypervisors for SDN networks in this article. We categorize the SDN hypervisors according to their architecture into centralized and distributed hypervisors. We furthermore sub-classify the hypervisors according to their execution platform into hypervisors running exclusively on general-purpose compute platforms, or on a combination of general-purpose compute platforms with general- or special-purpose network elements. We exhaustively compare the network attribute abstraction and isolation features of the existing SDN hypervisors. As part of the future research agenda, we outline the development of a performance evaluation framework for SDN hypervisors.
Computer networks have become a critical infrastructure. In fact, networks should not only meet strict requirements in terms of correctness, availability, and performance, but they should also be very flexible and support fast updates, e.g., due to policy changes, increasing traffic, or failures. This paper presents a structured survey of mechanism and protocols to update computer networks in a fast and consistent manner. In particular, we identify and discuss the different desirable consistency properties that should be provided throughout a network update, the algorithmic techniques which are needed to meet these consistency properties, and the implications on the speed and costs at which updates can be performed. We also explain the relationship between consistent network update problems and classic algorithmic optimization ones. While our survey is mainly motivated by the advent of Software-Defined Networks (SDNs) and their primary need for correct and efficient update techniques, the fundamental underlying problems are not new, and we provide a historical perspective of the subject as well.
Panoptic segmentation, which needs to assign a category label to each pixel and segment each object instance simultaneously, is a challenging topic. Traditionally, the existing approaches utilize two independent models without sharing features, which makes the pipeline inefficient to implement. In addition, a heuristic method is usually employed to merge the results. However, the overlapping relationship between object instances is difficult to determine without sufficient context information during the merging process. To address the problems, we propose a novel end-to-end network for panoptic segmentation, which can efficiently and effectively predict both the instance and stuff segmentation in a single network. Moreover, we introduce a novel spatial ranking module to deal with the occlusion problem between the predicted instances. Extensive experiments have been done to validate the performance of our proposed method and promising results have been achieved on the COCO Panoptic benchmark.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا