Do you want to publish a course? Click here

Towards GANs Approximation Ability

83   0   0.0 ( 0 )
 Added by Xueshuang Xiang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Generative adversarial networks (GANs) have attracted intense interest in the field of generative models. However, few investigations focusing either on the theoretical analysis or on algorithm design for the approximation ability of the generator of GANs have been reported. This paper will first theoretically analyze GANs approximation property. Similar to the universal approximation property of the fully connected neural networks with one hidden layer, we prove that the generator with the input latent variable in GANs can universally approximate the potential data distribution given the increasing hidden neurons. Furthermore, we propose an approach named stochastic data generation (SDG) to enhance GANsapproximation ability. Our approach is based on the simple idea of imposing randomness through data generation in GANs by a prior distribution on the conditional probability between the layers. SDG approach can be easily implemented by using the reparameterization trick. The experimental results on synthetic dataset verify the improved approximation ability obtained by this SDG approach. In the practical dataset, four GANs using SDG can also outperform the corresponding traditional GANs when the model architectures are smaller.



rate research

Read More

Wasserstein GANs (WGANs), built upon the Kantorovich-Rubinstein (KR) duality of Wasserstein distance, is one of the most theoretically sound GAN models. However, in practice it does not always outperform other variants of GANs. This is mostly due to the imperfect implementation of the Lipschitz condition required by the KR duality. Extensive work has been done in the community with different implementations of the Lipschitz constraint, which, however, is still hard to satisfy the restriction perfectly in practice. In this paper, we argue that the strong Lipschitz constraint might be unnecessary for optimization. Instead, we take a step back and try to relax the Lipschitz constraint. Theoretically, we first demonstrate a more general dual form of the Wasserstein distance called the Sobolev duality, which relaxes the Lipschitz constraint but still maintains the favorable gradient property of the Wasserstein distance. Moreover, we show that the KR duality is actually a special case of the Sobolev duality. Based on the relaxed duality, we further propose a generalized WGAN training scheme named Sobolev Wasserstein GAN (SWGAN), and empirically demonstrate the improvement of SWGAN over existing methods with extensive experiments.
Lipschitz continuity recently becomes popular in generative adversarial networks (GANs). It was observed that the Lipschitz regularized discriminator leads to improved training stability and sample quality. The mainstream implementations of Lipschitz continuity include gradient penalty and spectral normalization. In this paper, we demonstrate that gradient penalty introduces undesired bias, while spectral normalization might be over restrictive. We accordingly propose a new method which is efficient and unbiased. Our experiments verify our analysis and show that the proposed method is able to achieve successful training in various situations where gradient penalty and spectral normalization fail.
We present a framework to understand GAN training as alternating density ratio estimation and approximate divergence minimization. This provides an interpretation for the mismatched GAN generator and discriminator objectives often used in practice, and explains the problem of poor sample diversity. We also derive a family of generator objectives that target arbitrary $f$-divergences without minimizing a lower bound, and use them to train generative image models that target either improved sample quality or greater sample diversity.
Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recently proposed Wasserstein GAN (WGAN) makes progress toward stable training of GANs, but sometimes can still generate only low-quality samples or fail to converge. We find that these problems are often due to the use of weight clipping in WGAN to enforce a Lipschitz constraint on the critic, which can lead to undesired behavior. We propose an alternative to clipping weights: penalize the norm of gradient of the critic with respect to its input. Our proposed method performs better than standard WGAN and enables stable training of a wide variety of GAN architectures with almost no hyperparameter tuning, including 101-layer ResNets and language models over discrete data. We also achieve high quality generations on CIFAR-10 and LSUN bedrooms.
Generative adversarial networks (GANs) generate data based on minimizing a divergence between two distributions. The choice of that divergence is therefore critical. We argue that the divergence must take into account the hypothesis set and the loss function used in a subsequent learning task, where the data generated by a GAN serves for training. Taking that structural information into account is also important to derive generalization guarantees. Thus, we propose to use the discrepancy measure, which was originally introduced for the closely related problem of domain adaptation and which precisely takes into account the hypothesis set and the loss function. We show that discrepancy admits favorable properties for training GANs and prove explicit generalization guarantees. We present efficient algorithms using discrepancy for two tasks: training a GAN directly, namely DGAN, and mixing previously trained generative models, namely EDGAN. Our experiments on toy examples and several benchmark datasets show that DGAN is competitive with other GANs and that EDGAN outperforms existing GAN ensembles, such as AdaGAN.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا