No Arabic abstract
We develop and analyze a measure-valued fluid model keeping track of parking and charging requirements of electric vehicles in a local distribution grid. We show how this model arises as an accumulation point of an appropriately scaled sequence of stochastic network models. The invariant point of the fluid model encodes the electrical characteristics of the network and the stochastic behavior of its users, and it is characterized, when it exists, by the solution of a so-called Alternating Current Optimal Power Flow (ACOPF) problem.
The number of electric vehicles (EVs) is expected to increase. As a consequence, more EVs will need charging, potentially causing not only congestion at charging stations, but also in the distribution grid. Our goal is to illustrate how this gives rise to resource allocation and performance problems that are of interest to the Sigmetrics community.
We describe the architecture and algorithms of the Adaptive Charging Network (ACN), which was first deployed on the Caltech campus in early 2016 and is currently operating at over 100 other sites in the United States. The architecture enables real-time monitoring and control and supports electric vehicle (EV) charging at scale. The ACN adopts a flexible Adaptive Scheduling Algorithm based on convex optimization and model predictive control and allows for significant over-subscription of electrical infrastructure. We describe some of the practical challenges in real-world charging systems, including unbalanced three-phase infrastructure, non-ideal battery charging behavior, and quantized control signals. We demonstrate how the Adaptive Scheduling Algorithm handles these challenges, and compare its performance against baseline algorithms from the deadline scheduling literature using real workloads recorded from the Caltech ACN and accurate system models. We find that in these realistic settings, our scheduling algorithm can improve operator profit by 3.4 times over uncontrolled charging and consistently outperforms baseline algorithms when delivering energy in highly congested systems.
The rise of electric vehicles (EVs) is unstoppable due to factors such as the decreasing cost of batteries and various policy decisions. These vehicles need to be charged and will therefore cause congestion in local distribution grids in the future. Motivated by this, we consider a charging station with finitely many parking spaces, in which electric vehicles arrive in order to get charged. An EV has a random parking time and a random charging time. Both the charging rate per vehicle and the charging rate possible for the station are assumed to be limited. Thus, the charging rate of uncharged EVs depends on the number of cars charging simultaneously. This model leads to a layered queueing network in which parking spaces with EV chargers have a dual role, of a server (to cars) and customers (to the grid). We are interested in the performance of the aforementioned model, focusing on the fraction of vehicles that get fully charged. To do so, we develop several bounds and asymptotic (fluid and diffusion) approximations for the vector process, which describes the total number of EVs and the number of not fully charged EVs in the charging station, and we compare these bounds and approximations with numerical outcomes.
We consider a distribution grid used to charge electric vehicles such that voltage drops stay bounded. We model this as a class of resource-sharing networks, known as bandwidth-sharing networks in the communication network literature. We focus on resource-sharing networks that are driven by a class of greedy control rules that can be implemented in a decentralized fashion. For a large number of such control rules, we can characterize the performance of the system by a fluid approximation. This leads to a set of dynamic equations that take into account the stochastic behavior of EVs. We show that the invariant point of these equations is unique and can be computed by solving a specific ACOPF problem, which admits an exact convex relaxation. We illustrate our findings with a case study using the SCE 47-bus network and several special cases that allow for explicit computations.
Lithium-ion battery packs are usually composed of hundreds of cells arranged in series and parallel connections. The proper functioning of these complex devices requires suitable Battery Management Systems (BMSs). Advanced BMSs rely on mathematical models to assure safety and high performance. While many approaches have been proposed for the management of single cells, the control of multiple cells has been less investigated and usually relies on simplified models such as equivalent circuit models. This paper addresses the management of a battery pack in which each cell is explicitly modelled as the Single Particle Model with electrolyte and thermal dynamics. A nonlinear Model Predictive Control (MPC) is presented for optimally charging the battery pack while taking voltage and temperature limits on each cell into account. Since the computational cost of nonlinear MPC grows significantly with the complexity of the underlying model, a sensitivity-based MPC (sMPC) is proposed, in which the model adopted is obtained by linearizing the dynamics along a nominal trajectory that is updated over time. The resulting sMPC optimizations are quadratic programs which can be solved in real-time even for large battery packs (e.g. fully electric motorbike with 156 cells) while achieving the same performance of the nonlinear MPC.