Do you want to publish a course? Click here

Holomorphic bundles trivializable by proper surjective holomorphic map

69   0   0.0 ( 0 )
 Added by Sorin Dumitrescu
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Given a compact complex manifold $M$, we investigate the holomorphic vector bundles $E$ on $M$ such that $varphi^* E$ is trivial for some surjective holomorphic map $varphi$, to $M$, from some compact complex manifold. We prove that these are exactly those holomorphic vector bundles that admit a flat holomorphic connection with finite monodromy homomorphism. A similar result is proved for holomorphic principal $G$-bundles, where $G$ is a connected reductive complex affine algebraic group.



rate research

Read More

This paper is devoted to the study of holomorphic distributions of dimension and codimension one on smooth weighted projective complete intersection Fano manifolds threedimensional, with Picard number equal to one. We study the relations between algebro-geometric properties of the singular set of singular holomorphic distributions and their associated sheaves. We characterize either distributions whose tangent sheaf or conormal sheaf are arithmetically Cohen Macaulay (aCM) on smooth weighted projective complete intersection Fano manifolds threefold. We also prove that a codimension one locally free distribution with trivial canonical bundle on any Fano threefold, with Picard number equal to one, has a tangent sheaf which either splits or it is stable.
Let $f:mathcal{X}to S$ be a proper holomorphic submersion of complex manifolds and $G$ a complex reductive linear algebraic group with Lie algebra $mathfrak{g}$. Assume also given a holomorphic principal $G$-bundle $mathcal{P}$ over $mathcal{X}$ which is endowed with a holomorphic connection $ abla$ relative to $f$ that is flat (this to be thought of as a holomorphic family of compact complex manifolds endowed with a holomorphic principal $G$-bundle with flat connection). We show that a refinement of the Chern-Weil homomorphism yields a graded algebra homomorphism $mathbb{C}[mathfrak{g}]^Gto bigoplus_{nge 0} H^0(S,,Omega^n_{S,cl}otimes R^nf_*mathbb{C})$, where $Omega^n_{S,cl}$ stands for the sheaf of closed holomorphic $n$-forms on $S$. If the fibers of $f$ are compact Riemann surfaces and we take as our invariant the Killing form, then we recover Goldmans closed holomorphic $2$-form on the base $S$.
This is the second part of a series of two papers dedicated to a systematic study of holomorphic Jacobi structures. In the first part, we introduced and study the concept of a holomorphic Jacobi manifold in a very natural way as well as various tools. In the present paper, we solve the integration problem for holomorphic Jacobi manifolds by proving that they integrate to complex contact groupoids. A crucial tool in our proof is what we call the homogenization scheme, which allows us to identify holomorphic Jacobi manifolds with homogeneous holomorphic Poisson manifolds and holomorphic contact groupoids with homogeneous complex symplectic groupoids.
We study codimension one holomorphic distributions on the projective three-space, analyzing the properties of their singular schemes and tangent sheaves. In particular, we provide a classification of codimension one distributions of degree at most 2 with locally free tangent sheaves, and show that codimension one distributions of arbitrary degree with only isolated singularities have stable tangent sheaves. Furthermore, we describe the moduli space of distributions in terms of Grothendiecks Quot-scheme for the tangent bundle. In certain cases, we show that the moduli space of codimension one distributions on the projective space is an irreducible, nonsingular quasi-projective variety. Finally, we prove that every rational foliation, and certain logarithmic foliations have stable tangent sheaves.
For every integer $g ,geq, 2$ we show the existence of a compact Riemann surface $Sigma$ of genus $g$ such that the rank two trivial holomorphic vector bundle ${mathcal O}^{oplus 2}_{Sigma}$ admits holomorphic connections with $text{SL}(2,{mathbb R})$ monodromy and maximal Euler class. Such a monodromy representation is known to coincide with the Fuchsian uniformizing representation for some Riemann surface of genus $g$. The construction carries over to all very stable and compatible real holomorphic structures for the topologically trivial rank two bundle over $Sigma$ and gives the existence of holomorphic connections with Fuchsian monodromy in these cases as well.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا