Modeling the Heterogeneity in COVID-19s Reproductive Number and its Impact on Predictive Scenarios


Abstract in English

The correct evaluation of the reproductive number $R$ for COVID-19 -- which characterizes the average number of secondary cases generated by each typical primary case -- is central in the quantification of the potential scope of the pandemic and the selection of an appropriate course of action. In most models, $R$ is modeled as a universal constant for the virus across outbreak clusters and individuals -- effectively averaging out the inherent variability of the transmission process due to varying individual contact rates, population densities, demographics, or temporal factors amongst many. Yet, due to the exponential nature of epidemic growth, the error due to this simplification can be rapidly amplified and lead to inaccurate predictions and/or risk evaluation. From the statistical modeling perspective, the magnitude of the impact of this averaging remains an open question: how can this intrinsic variability be percolated into epidemic models, and how can its impact on uncertainty quantification and predictive scenarios be better quantified? In this paper, we propose to study this question through a Bayesian perspective, creating a bridge between the agent-based and compartmental approaches commonly used in the literature. After deriving a Bayesian model that captures at scale the heterogeneity of a population and environmental conditions, we simulate the spread of the epidemic as well as the impact of different social distancing strategies, and highlight the strong impact of this added variability on the reported results. We base our discussion on both synthetic experiments -- thereby quantifying of the reliability and the magnitude of the effects -- and real COVID-19 data.

Download