Valley Hall effect is an appearance of the valley current in the direction transverse to the electric current. We develop the microscopic theory of the valley Hall effect in two-dimensional semiconductors where the electrons are dragged by the phonons or photons. We derive and analyze all relevant contributions to the valley current including the skew-scattering effects together with the anomalous contributions caused by the side-jumps and the anomalous velocity. The partial compensation of the anomalous contributions is studied in detail. The role of two-phonon and two-impurity scattering processes is analyzed. We also compare the valley Hall effect under the drag conditions and the valley Hall effect caused by the external static electric field.