Algebraic hull of maximal measurable cocycles of surface groups into Hermitian Lie groups


Abstract in English

Following the work of Burger, Iozzi and Wienhard for representations, in this paper we introduce the notion of maximal measurable cocycles of a surface group. More precisely, let $mathbf{G}$ be a semisimple algebraic $mathbb{R}$-group such that $G=mathbf{G}(mathbb{R})^circ$ is of Hermitian type. If $Gamma leq L$ is a torsion-free lattice of a finite connected covering of $text{PU}(1,1)$, given a standard Borel probability $Gamma$-space $(Omega,mu_Omega)$, we introduce the notion of Toledo invariant for a measurable cocycle $sigma:Gamma times Omega rightarrow G$. The Toledo remains unchanged along $G$-cohomology classes and its absolute value is bounded by the rank of $G$. This allows to define maximal measurable cocycles. We show that the algebraic hull $mathbf{H}$ of a maximal cocycle $sigma$ is reductive and the centralizer of $H=mathbf{H}(mathbb{R})^circ$ is compact. If additionally $sigma$ admits a boundary map, then $H$ is of tube type and $sigma$ is cohomologous to a cocycle stabilizing a unique maximal tube-type subdomain. This result is analogous to the one obtained for representations. In the particular case $G=text{PU}(n,1)$ maximality is sufficient to prove that $sigma$ is cohomologous to a cocycle preserving a complex geodesic. We conclude with some remarks about boundary maps of maximal Zariski dense cocycles.

Download