Do you want to publish a course? Click here

First radio evidence for impulsive heating contribution to the quiet solar corona

114   0   0.0 ( 0 )
 Added by Surajit Mondal Mr
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

This letter explores the relevance of nanoflare based models for heating the quiet sun corona. Using metrewave data from the Murchison Widefield Array, we present the first successful detection of impulsive emissions down to flux densities of $sim$mSFU, about two orders of magnitude weaker than earlier attempts. These impulsive emissions have durations $lesssim 1$s and are present throughout the quiet solar corona. The fractional time occupancy of these impulsive emissions at a given region is $lesssim 10%$. The histograms of these impulsive emissions follow a powerlaw distribution and show signs of clustering at small timescales. Our estimate of the energy which must be dumped in the corona to generate these impulsive emissions is consistent with the coronal heating requirements. Additionally, the statistical properties of these impulsive emissions are very similar to those recently determined for magnetic switchbacks by the Parker Solar Probe (PSP). We hope that this work will lead to a renewed interest in relating these weak impulsive emissions to the energy deposited in the corona, the quantity of physical interesting from a coronal heating perspective, and explore their relationship with the magnetic switchbacks observed by the PSP.



rate research

Read More

The solar corona consists of a million-degree Kelvin plasma. A complete understanding of this phenomenon demands the study of Quiet Sun (QS) regions. In this work, we study QS regions in the 171 {AA}, 193 {AA} and 211 {AA} passbands of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), by combining the empirical impulsive heating forward model of Pauluhn & Solanki (2007) with a machine-learning inversion model that allows uncertainty quantification. We find that there are {approx} 2--3 impulsive events per min, with a lifetime of about 10--20 min. Moreover, for all the three passbands, the distribution of power law slope {alpha} peaks above 2. Our exploration of correlations among the frequency of impulsive events and their timescales and peak energy suggests that conduction losses dominate over radiative cooling losses. All these finding suggest that impulsive heating is a viable heating mechanism in QS corona.
We solve numerically the ideal MHD equations with an external gravitational field in 2D in order to study the effects of impulsively generated linear and non-linear Alfven waves into isolated solar arcades and coronal funnels. We analyze the region containing the interface between the photosphere and the corona. The main interest is to study the possibility that Alfven waves triggers the energy flux transfer toward the quiet solar corona and heat it, including the case that two consecutive waves can occur. We find that in the case of arcades, short or large, the transferred fluxes by Alfven waves are sufficient to heat the quiet corona only during a small lapse of time and in a certain region. In the case of funnels the threshold is achieved only when the wave is faster than 10 km/s, which is extremely high. We conclude from our analysis, that Alfven waves, even in the optimistic scenario of having two consecutive Alfven wave pulses, cannot transport enough energy as to heat the quiet corona.
The Murchison Widefield Array (MWA) recorded cite{Mondal-2020} impulsive radio events in the quiet solar corona at frequencies 98, 120, 132, and 160 MHz. We propose that these radio events are the direct manifestation of dark matter annihilation events within the axion quark nugget (AQN) framework. It has been argued cite{Zhitnitsky:2017rop,Raza:2018gpb} that the AQN annihilation events in the quiet solar corona can be identified with the nanoflares conjectured by Parker cite{Parker-1983}. We further support this claim by demonstrating that observed impulsive radio events cite{Mondal-2020}, including their rate of appearance, their temporal and spatial distributions and their energetics, are matching the generic consequences of AQN annihilations in the quiet corona. We propose to test this idea by analyzing the correlated clustering of impulsive radio events in different frequency bands. These correlations are expressed in terms of the time delays between radio events in different frequency bands, measured in seconds. We also make generic predictions for low (80 and 89 MHz) and high (179, 196, 217 and 240 MHz) frequency bands, that have been recorded, but not published, by cite{Mondal-2020}. We finally suggest to test our proposal by studying possible cross-correlation between MWA radio signals and Solar Orbiter recording of extreme UV photons (a.k.a. campfires).
97 - C. Vocks , G. Mann , F. Breitling 2018
The quiet solar corona emits meter-wave thermal bremsstrahlung. Coronal radio emission can only propagate above that radius, $R_omega$, where the local plasma frequency eqals the observing frequency. The radio interferometer LOw Frequency ARray (LOFAR) observes in its low band (10 -- 90 MHz) solar radio emission originating from the middle and upper corona. We present the first solar aperture synthesis imaging observations in the low band of LOFAR in 12 frequencies each separated by 5 MHz. From each of these radio maps we infer $R_omega$, and a scale height temperature, $T$. These results can be combined into coronal density and temperature profiles. We derived radial intensity profiles from the radio images. We focus on polar directions with simpler, radial magnetic field structure. Intensity profiles were modeled by ray-tracing simulations, following wave paths through the refractive solar corona, and including free-free emission and absorption. We fitted model profiles to observations with $R_omega$ and $T$ as fitting parameters. In the low corona, $R_omega < 1.5$ solar radii, we find high scale height temperatures up to 2.2e6 K, much more than the brightness temperatures usually found there. But if all $R_omega$ values are combined into a density profile, this profile can be fitted by a hydrostatic model with the same temperature, thereby confirming this with two independent methods. The density profile deviates from the hydrostatic model above 1.5 solar radii, indicating the transition into the solar wind. These results demonstrate what information can be gleaned from solar low-frequency radio images. The scale height temperatures we find are not only higher than brightness temperatures, but also than temperatures derived from coronograph or EUV data. Future observations will provide continuous frequency coverage, eliminating the need for local hydrostatic density models.
We analyzed the occurrence rates of flares on stars of spectral types K, G, F, and A, observed by Kepler. We found that the histogram of occurrence frequencies of stellar flares is systematically shifted towards a high-energy tail for A-type stars compared to stars of cooler spectral types. We extrapolated the fitted power laws towards flares with smaller energies (nanoflares) and made estimates for total energy flux to stellar atmospheres by flares. We found that for A-type stars the total energy flux density was at least 4-times smaller than for G-stars. We speculate that this deficit in energy supply may explain the lack of hot coronae on A-type stars. Our results indicate an importance of nanoflares for heating and formation of the solar corona.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا