Do you want to publish a course? Click here

Is the epidemic spread related to GDP? Visualizing the distribution of COVID-19 in Chinese Mainland

67   0   0.0 ( 0 )
 Added by Yi Zhang
 Publication date 2020
  fields Biology Physics
and research's language is English
 Authors Yi Zhang




Ask ChatGPT about the research

In December 2019, COVID-19 were detected in Wuhan City, Hubei Province of China. SARS-CoV-2 rapidly spread to the whole Chinese mainland with the people during the Chinese Spring Festival Travel Rush. As of 19 February 2020, 74576 confirmed cases of COVID-19 had been reported in Chinese Mainland. What kind of cities have more confirmed cases, and is there any relationship between GDP and confirmed cases? In this study, we explored the relationship between the confirmed cases of COVID-19 and GDP at the prefectural-level, found a positive correlation between them. This finding warns high GDP areas should pay more prevention and control efforts when an epidemic outbreak, as they have greater risks than other areas nearby.



rate research

Read More

We develop an agent-based model on a network meant to capture features unique to COVID-19 spread through a small residential college. We find that a safe reopening requires strong policy from administrators combined with cautious behavior from students. Strong policy includes weekly screening tests with quick turnaround and halving the campus population. Cautious behavior from students means wearing facemasks, socializing less, and showing up for COVID-19 testing. We also find that comprehensive testing and facemasks are the most effective single interventions, building closures can lead to infection spikes in other areas depending on student behavior, and faster return of test results significantly reduces total infections.
191 - Nilmani Mathur , Gargi Shaw 2020
We propose a mathematical model to analyze the time evolution of the total number of infected population with Covid-19 disease at a region in the ongoing pandemic. Using the available data of Covid-19 infected population on various countries we formulate a model which can successfully track the time evolution from early days to the saturation period in a given wave of this infectious disease. It involves a set of effective parameters which can be extracted from the available data. Using those parameters the future trajectories of the disease spread can also be projected. A set of differential equations is also proposed whose solutions are these time evolution trajectories. Using such a formalism we project the future time evolution trajectories of infection spread for a number of countries where the Covid-19 infection is still rapidly rising.
In late-2020, many countries around the world faced another surge in number of confirmed cases of COVID-19, including United Kingdom, Canada, Brazil, United States, etc., which resulted in a large nationwide and even worldwide wave. While there have been indications that precaution fatigue could be a key factor, no scientific evidence has been provided so far. We used a stochastic metapopulation model with a hierarchical structure and fitted the model to the positive cases in the US from the start of outbreak to the end of 2020. We incorporated non-pharmaceutical interventions (NPIs) into this model by assuming that the precaution strength grows with positive cases and studied two types of pandemic fatigue. We found that people in most states and in the whole US respond to the outbreak in a sublinear manner (with exponent k=0.5), while only three states (Massachusetts, New York and New Jersey) have linear reaction (k=1). Case fatigue (decline in peoples vigilance to positive cases) is responsible for 58% of cases, while precaution fatigue (decay of maximal fraction of vigilant group) accounts for 26% cases. If there were no pandemic fatigue (no case fatigue and no precaution fatigue), total positive cases would have reduced by 68% on average. Our study shows that pandemic fatigue is the major cause of the worsening situation of COVID-19 in United States. Reduced vigilance is responsible for most positive cases, and higher mortality rate tends to push local people to react to the outbreak faster and maintain vigilant for longer time.
130 - L.E. Olivier , I.K. Craig 2020
An epidemiological model is developed for the spread of COVID-19 in South Africa. A variant of the classical compartmental SEIR model, called the SEIQRDP model, is used. As South Africa is still in the early phases of the global COVID-19 pandemic with the confirmed infectious cases not having peaked, the SEIQRDP model is first parameterized on data for Germany, Italy, and South Korea - countries for which the number of infectious cases are well past their peaks. Good fits are achieved with reasonable predictions of where the number of COVID-19 confirmed cases, deaths, and recovered cases will end up and by when. South African data for the period from 23 March to 8 May 2020 is then used to obtain SEIQRDP model parameters. It is found that the model fits the initial disease progression well, but that the long-term predictive capability of the model is rather poor. The South African SEIQRDP model is subsequently recalculated with the basic reproduction number constrained to reported values. The resulting model fits the data well, and long-term predictions appear to be reasonable. The South African SEIQRDP model predicts that the peak in the number of confirmed infectious individuals will occur at the end of October 2020, and that the total number of deaths will range from about 10,000 to 90,000, with a nominal value of about 22,000. All of these predictions are heavily dependent on the disease control measures in place, and the adherence to these measures. These predictions are further shown to be particularly sensitive to parameters used to determine the basic reproduction number. The future aim is to use a feedback control approach together with the South African SEIQRDP model to determine the epidemiological impact of varying lockdown levels proposed by the South African Government.
In order to analyze the effectiveness of three successive nationwide lockdown enforced in India, we present a data-driven analysis of four key parameters, reducing the transmission rate, restraining the growth rate, flattening the epidemic curve and improving the health care system. These were quantified by the consideration of four different metrics, namely, reproduction rate, growth rate, doubling time and death to recovery ratio. The incidence data of the COVID-19 (during the period of 2nd March 2020 to 31st May 2020) outbreak in India was analyzed for the best fit to the epidemic curve, making use of the exponential growth, the maximum likelihood estimation, sequential Bayesian method and estimation of time-dependent reproduction. The best fit (based on the data considered) was for the time-dependent approach. Accordingly, this approach was used to assess the impact on the effective reproduction rate. The period of pre-lockdown to the end of lockdown 3, saw a $45%$ reduction in the rate of effective reproduction rate. During the same period the growth rate reduced from $393%$ during the pre-lockdown to $33%$ after lockdown 3, accompanied by the average doubling time increasing form $4$-$6$ days to $12$-$14$ days. Finally, the death-to-recovery ratio dropped from $0.28$ (pre-lockdown) to $0.08$ after lockdown 3. In conclusion, all the four metrics considered to assess the effectiveness of the lockdown, exhibited significant favourable changes, from the pre-lockdown period to the end of lockdown 3. Analysis of the data in the post-lockdown period with these metrics will provide greater clarity with regards to the extent of the success of the lockdown.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا