Do you want to publish a course? Click here

Spectral Discovery of Jointly Smooth Features for Multimodal Data

63   0   0.0 ( 0 )
 Added by Felix Dietrich
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a spectral method for deriving functions that are jointly smooth on multiple observed manifolds. This allows us to register measurements of the same phenomenon by heterogeneous sensors, and to reject sensor-specific noise. Our method is unsupervised and primarily consists of two steps. First, using kernels, we obtain a subspace spanning smooth functions on each separate manifold. Then, we apply a spectral method to the obtained subspaces and discover functions that are jointly smooth on all manifolds. We show analytically that our method is guaranteed to provide a set of orthogonal functions that are as jointly smooth as possible, ordered by increasing Dirichlet energy from the smoothest to the least smooth. In addition, we show that the extracted functions can be efficiently extended to unseen data using the Nystr{o}m method. We demonstrate the proposed method on both simulated and real measured data and compare the results to nonlinear variants of the seminal Canonical Correlation Analysis (CCA). Particularly, we show superior results for sleep stage identification. In addition, we show how the proposed method can be leveraged for finding minimal realizations of parameter spaces of nonlinear dynamical systems.



rate research

Read More

Supervised machine learning models often associate irrelevant nuisance factors with the prediction target, which hurts generalization. We propose a framework for training robust neural networks that induces invariance to nuisances through learning to discover and separate predictive and nuisance factors of data. We present an information theoretic formulation of our approach, from which we derive training objectives and its connections with previous methods. Empirical results on a wide array of datasets show that the proposed framework achieves state-of-the-art performance, without requiring nuisance annotations during training.
Given the apparent difficulty of learning models that are robust to adversarial perturbations, we propose tackling the simpler problem of developing adversarially robust features. Specifically, given a dataset and metric of interest, the goal is to return a function (or multiple functions) that 1) is robust to adversarial perturbations, and 2) has significant variation across the datapoints. We establish strong connections between adversarially robust features and a natural spectral property of the geometry of the dataset and metric of interest. This connection can be leveraged to provide both robust features, and a lower bound on the robustness of any function that has significant variance across the dataset. Finally, we provide empirical evidence that the adversarially robust features given by this spectral approach can be fruitfully leveraged to learn a robust (and accurate) model.
Spectral clustering is one of the most effective clustering approaches that capture hidden cluster structures in the data. However, it does not scale well to large-scale problems due to its quadratic complexity in constructing similarity graphs and computing subsequent eigendecomposition. Although a number of methods have been proposed to accelerate spectral clustering, most of them compromise considerable information loss in the original data for reducing computational bottlenecks. In this paper, we present a novel scalable spectral clustering method using Random Binning features (RB) to simultaneously accelerate both similarity graph construction and the eigendecomposition. Specifically, we implicitly approximate the graph similarity (kernel) matrix by the inner product of a large sparse feature matrix generated by RB. Then we introduce a state-of-the-art SVD solver to effectively compute eigenvectors of this large matrix for spectral clustering. Using these two building blocks, we reduce the computational cost from quadratic to linear in the number of data points while achieving similar accuracy. Our theoretical analysis shows that spectral clustering via RB converges faster to the exact spectral clustering than the standard Random Feature approximation. Extensive experiments on 8 benchmarks show that the proposed method either outperforms or matches the state-of-the-art methods in both accuracy and runtime. Moreover, our method exhibits linear scalability in both the number of data samples and the number of RB features.
Multimodal learning for generative models often refers to the learning of abstract concepts from the commonality of information in multiple modalities, such as vision and language. While it has proven effective for learning generalisable representations, the training of such models often requires a large amount of related multimodal data that shares commonality, which can be expensive to come by. To mitigate this, we develop a novel contrastive framework for generative model learning, allowing us to train the model not just by the commonality between modalities, but by the distinction between related and unrelated multimodal data. We show in experiments that our method enables data-efficient multimodal learning on challenging datasets for various multimodal VAE models. We also show that under our proposed framework, the generative model can accurately identify related samples from unrelated ones, making it possible to make use of the plentiful unlabeled, unpaired multimodal data.
In time-to-event prediction problems, a standard approach to estimating an interpretable model is to use Cox proportional hazards, where features are selected based on lasso regularization or stepwise regression. However, these Cox-based models do not learn how different features relate. As an alternative, we present an interpretable neural network approach to jointly learn a survival model to predict time-to-event outcomes while simultaneously learning how features relate in terms of a topic model. In particular, we model each subject as a distribution over topics, which are learned from clinical features as to help predict a time-to-event outcome. From a technical standpoint, we extend existing neural topic modeling approaches to also minimize a survival analysis loss function. We study the effectiveness of this approach on seven healthcare datasets on predicting time until death as well as hospital ICU length of stay, where we find that neural survival-supervised topic models achieves competitive accuracy with existing approaches while yielding interpretable clinical topics that explain feature relationships.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا