No Arabic abstract
Comprehensive understanding of thermal transport in nanostructured materials needs large scale simulations bridging length scales dictated by different physics related to the wave versus particle nature of phonons. Yet, available computational approaches implicitly treat phonons as either just waves or as particles. In this work, using a full wave-based Non-Equilibrium Greens Function (NEGF) method, and a particle-based ray-tracing Monte Carlo (MC) approach, we investigate the qualitative differences in the wave and particle-based phonon transport at the vicinity of nanoscale features. For the simple example of a nanoporous geometry, we show that phonon transmission agrees very well for both methods with an error margin of approximately 15%, across phonon wavelengths even for features with sizes down to 3-4 nm. For cases where phonons need to squeeze in smaller regions to propagate, we find that MC underestimates the transmission of long wavelength phonons whereas wave treatment within NEGF indicates that those long wavelength phonons can propagate more easily. We also find that particle-based simulation methods are somewhat more sensitive to structural variations compared to the wave-based NEGF method. The insight extracted from comparing wave and particle methods can be used to provide a better and more complete understanding of phonon transport in nanomaterials.
Using the phonon Boltzmann transport formalism and density functional theory based calculations, we show that stanene has a low thermal conductivity. For a sample size of 1$times$1 $mu$m$^{2}$ ($Ltimes W$), the lattice thermal conductivities along the zigzag and armchair directions are 10.83 W/m-K and 9.2 W/m-K respectively, at room temperature, indicating anisotropy in the thermal transport. The low values of thermal conductivity are due to large anharmonicity in the crystal resulting in high Gr{u}neisen parameters, and low group velocities. The room temperature effective phonon mean free path is found to be around 17 nm indicating that the thermal transport in stanene is completely diffusive in nature. Furthermore, our study brings out the relative importance of the contributing phonon branches and reveals that, at very low temperatures, the contribution to lattice thermal conductivity comes from the flexural acoustic (ZA) branch and at higher temperatures it is dominated by the longitudinal acoustic (LA) branch. We also show that lattice thermal conductivity of stanene can further be reduced by tuning the sample size and creating rough surfaces at the edges. Such tunability in the lattice thermal conductivity in stanene suggests its applications in thermoelectric devices.
A theoretical model of a single molecule coupled to many vibronic modes is presented. At low energies, transport is dominated by electron-vibron processes where transfer of an electron through the dot is accompanied by the excitation/emission of quanta (vibrons). Because the frequency of the $n$th mode is taken as an $n$th multiple of the frequency of the fundamental mode, several energetically degenerate or quasi-degenerate vibronic configurations can contribute to transport. We investigate the consequences of strong electron-vibron coupling in a fully emph{symmetric} set-up. Several striking features are predicted. In particular, a gate-asymmetry and pronounced negative differential conductance features are observed. We attribute these features to the presence of slow channels originating from the interplay of Franck-Condon suppression of transport channels and spin/orbital degeneracies.
We develop a quantum noise approach to study quantum transport through nanostructures. The nanostructures, such as quantum dots, are regarded as artificial atoms, subject to quasi-equilibrium fermionic reservoirs of electrons in biased leads. Noise operators characterizing the quantum fluctuation in the reservoirs are related to the damping and fluctuation of the artificial atoms through the quantum Langevin equation. The average current and current noise are derived in terms of the reservoir noise correlations. In the white-noise limit, we show that the current and current noise can be exactly calculated by the quantum noise approach, even in the presence of interaction such as Coulomb blockade. As a typical application, the average current and current noise through a single quantum dot are studied.
We report a new approach to the thermal conductivity manipulation -- substrate coupling. Generally, the phonon scattering with substrates can decrease the thermal conductivity, as observed in recent experiments. However, we find that at certain regions, the coupling to substrates can increase the thermal conductivity due to a reduction of anharmonic phonon scattering induced by shift of the phonon band to the low wave vector. In this way, the thermal conductivity can be efficiently manipulated via coupling to different substrates, without changing or destroying the material structures. This idea is demonstrated by calculating the thermal conductivity of modified double-walled carbon nanotubes and also by the ice nanotubes coupled within carbon nanotubes.
In this work, the heat vortexes in two-dimensional porous or ribbon structures are investigated based on the phonon Boltzmann transport equation (BTE) under the Callaway model. First, the separate thermal effects of normal (N) scattering and resistive (R) scattering are investigated with frequency-independent assumptions. And then the heat vortexes in graphene are studied as a specific example. It is found that the heat vortexes can appear in both ballistic (rare R/N scattering) and hydrodynamic (N scattering dominates) regimes but disappear in the diffusive (R scattering dominates) regime. As long as there is not sufficient R scattering, the heat vortexes can appear in present simulations.