Do you want to publish a course? Click here

Tensor network models of AdS/qCFT

145   0   0.0 ( 0 )
 Added by Alexander Jahn
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The study of critical quantum many-body systems through conformal field theory (CFT) is one of the pillars of modern quantum physics. Certain CFTs are also understood to be dual to higher-dimensional theories of gravity via the anti-de Sitter/conformal field theory (AdS/CFT) correspondence. To reproduce various features of AdS/CFT, a large number of discrete models based on tensor networks have been proposed. Some recent models, most notably including toy models of holographic quantum error correction, are constructed on regular time-slice discretizations of AdS. In this work, we show that the symmetries of these models are well suited for approximating CFT states, as their geometry enforces a discrete subgroup of conformal symmetries. Based on these symmetries, we introduce the notion of a quasiperiodic conformal field theory (qCFT), a critical theory less restrictive than full CFT with characteristic multi-scale quasiperiodicity. We discuss holographic code states and their renormalization group flow as specific implementations of a qCFT with fractional central charges and argue that their behavior generalizes to a large class of existing and future models. Beyond approximating CFT properties, we show that these can be best understood as belonging to a new paradigm of discrete holography.



rate research

Read More

Recent progress in studies of holographic dualities, originally motivated by insights from string theory, has led to a confluence with concepts and techniques from quantum information theory. A particularly successful approach has involved capturing holographic properties by means of tensor networks which not only give rise to physically meaningful correlations of holographic boundary states, but also reproduce and refine features of quantum error correction in holography. This topical review provides an overview over recent successful realizations of such models. It does so by building on an introduction of the theoretical foundations of AdS/CFT and necessary quantum information concepts, many of which have themselves developed into independent, rapidly evolving research fields.
Tensor networks are a central tool in condensed matter physics. In this paper, we study the task of tensor network non-zero testing (TNZ): Given a tensor network T, does T represent a non-zero vector? We show that TNZ is not in the Polynomial-Time Hierarchy unless the hierarchy collapses. We next show (among other results) that the special cases of TNZ on non-negative and injective tensor networks are in NP. Using this, we make a simple observation: The commuting variant of the MA-complete stoquastic k-SAT problem on D-dimensional qudits is in NP for logarithmic k and constant D. This reveals the first class of quantum Hamiltonians whose commuting variant is known to be in NP for all (1) logarithmic k, (2) constant D, and (3) for arbitrary interaction graphs.
Central to the AdS/CFT correspondence is a precise relationship between the curvature of an anti-de Sitter (AdS) spacetime and the central charge of the dual conformal field theory (CFT) on its boundary. Our work shows that such a relationship can also be established for tensor network models of AdS/CFT based on regular bulk geometries, leading to an analytical form of the maximal central charges exhibited by the boundary states. We identify a class of tensors based on Majorana dimer states that saturate these bounds in the large curvature limit, while also realizing perfect and block-perfect holographic quantum error correcting codes. Furthermore, the renormalization group description of the resulting model is shown to be analogous to the strong disorder renormalization group, thus giving the first example of an exact quantum error correcting code that gives rise to a well-understood critical system. These systems exhibit a large range of fractional central charges, tunable by the choice of bulk tiling. Our approach thus provides a precise physical interpretation of tensor network models on regular hyperbolic geometries and establishes quantitative connections to a wide range of existing models.
134 - C. Krumnow , L. Veis , O. Legeza 2015
Tensor network states and specifically matrix-product states have proven to be a powerful tool for simulating ground states of strongly correlated spin models. Recently, they have also been applied to interacting fermionic problems, specifically in the context of quantum chemistry. A new freedom arising in such non-local fermionic systems is the choice of orbitals, it being far from clear what choice of fermionic orbitals to make. In this work, we propose a way to overcome this challenge. We suggest a method intertwining the optimisation over matrix product states with suitable fermionic Gaussian mode transformations. The described algorithm generalises basis changes in the spirit of the Hartree-Fock method to matrix-product states, and provides a black box tool for basis optimisation in tensor network methods.
Tensor network states (TNS) are a powerful approach for the study of strongly correlated quantum matter. The curse of dimensionality is addressed by parametrizing the many-body state in terms of a network of partially contracted tensors. These tensors form a substantially reduced set of effective degrees of freedom. In practical algorithms, functionals like energy expectation values or overlaps are optimized over certain sets of TNS. Concerning algorithmic stability, it is important whether the considered sets are closed because, otherwise, the algorithms may approach a boundary point that is outside the TNS set and tensor elements diverge. We discuss the closedness and geometries of TNS sets, and we propose regularizations for optimization problems on non-closed TNS sets. We show that sets of matrix product states (MPS) with open boundary conditions, tree tensor network states (TTNS), and the multiscale entanglement renormalization ansatz (MERA) are always closed, whereas sets of translation-invariant MPS with periodic boundary conditions (PBC), heterogeneous MPS with PBC, and projected entangled pair states (PEPS) are generally not closed. The latter is done using explicit examples like the W state, states that we call two-domain states, and fine-grain
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا