Fermionic criticality with enlarged fluctuations in Dirac semimetals


Abstract in English

The fluctuations-driven continuous quantum criticality has sparked tremendous interest in condensed matter physics. It has been verified that the gapless fermions fluctuations can change the nature of phase transition at criticality. In this paper, we study the fermionic quantum criticality with enlarged Ising$times$Ising fluctuations in honeycomb lattice materials. The Gross-Neveu-Yukawa theory for the multicriticality between the semimetallic phase and two ordered phases that break Ising symmetry is investigated by employing perturbative renormalization group approach. We first determine the critical range in which the quantum fluctuations may render the phase transition continuous. We find that the Ising criticality is continuous only when the flavor numbers of four-component Dirac fermions $N_fgeq1/4$. Using the $epsilon$ expansion in four space-time dimensions, we then study the Ising$times$Ising multicriticality stemming from the symmetry-breaking electronic instabilities. We analyze the underlying fixed-point structure and compute the critical exponents for the Ising$times$Ising Gross-Neveu-Yukawa universality class. Further, the correlation scaling behavior for the fermion bilinear on the honeycomb lattice at the multicritical point are also briefly discussed.

Download