Do you want to publish a course? Click here

Rastall gravity extension of the standard $Lambda$CDM model: theoretical features and observational constraints

146   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a detailed investigation of the Rastall gravity extension of the standard $Lambda$CDM model. We review the model for two simultaneous modifications of different nature in the Friedmann equation due to the Rastall gravity: the new contributions of the material (actual) sources (considered as effective source) and the altered evolution of the material sources. We discuss the role/behavior of these modifications with regard to some low redshift tensions, including the so-called $H_0$ tension, prevailing within the standard $Lambda$CDM. We constrain the model at the level of linear perturbations, and obtain the first constraints through a robust and accurate analysis using the latest full Planck CMB data, with and without including BAO data. We find that the Rastall parameter $epsilon$ (null for general relativity) is consistent with zero at 68% CL (with a tendency towards positive values, $-0.0001 < epsilon < 0.0007$ (CMB+BAO) at 68% CL), which in turn implies no significant statistical evidence for deviation from general relativity, and also a precision of $mathcal{O}(10^{-4})$ for the coefficient $-1/2$ of the term $g_{mu u}R$ in the Einstein field equations of general relativity (guaranteeing the local energy-momentum conservation). We explore the consequences led by the Rastall gravity on the cosmological parameters in the light of the observational analyses. It turns out that the effective source dynamically screens the usual vacuum energy at high redshifts, but this mechanism barely works due to the opposition by the altered evolution of CDM. Consequently, two simultaneous modifications of different nature in the Friedmann equation act against each other, and do not help to considerably relax the so-called low redshift tensions. Our results may offer a guide for the research community that studies the Rastall gravity in various aspects of gravitation and cosmology.



rate research

Read More

We present an explicit detailed theoretical and observational investigation of an anisotropic massive Brans-Dicke (BD) gravity extension of the standard $Lambda$CDM model, wherein the extension is characterized by two additional degrees of freedom; the BD parameter, $omega$, and the present day density parameter corresponding to the shear scalar, $Omega_{sigma^2,0}$. The BD parameter, determining the deviation from general relativity (GR), by alone characterizes both the dynamics of the effective dark energy (DE) and the redshift dependence of the shear scalar. These two affect each other depending on $omega$, namely, the shear scalar contributes to the dynamics of the effective DE, and its anisotropic stress --which does not exist in scalar field models of DE within GR-- controls the dynamics of the shear scalar deviating from the usual $propto(1+z)^6$ form in GR. We mainly confine the current work to non-negative $omega$ values as it is the right sign --theoretically and observationally-- for investigating the model as a correction to the $Lambda$CDM. By considering the current cosmological observations, we find that $omegagtrsim 250$, $Omega_{sigma^2,0}lesssim 10^{-23}$ and the contribution of the anisotropy of the effective DE to this value is insignificant. We conclude that the simplest anisotropic massive BD gravity extension of the standard $Lambda$CDM model exhibits no significant deviations from it all the way to the Big Bang Nucleosynthesis. We also point out the interesting features of the model in the case of negative $omega$ values; for instance, the constraints on $Omega_{sigma^2,0}$ could be relaxed considerably, the values of $omegasim-1$ (relevant to string theories) predict dramatically different dynamics for the expansion anisotropy.
We study Planck 2015 cosmic microwave background (CMB) anisotropy data using the energy density inhomogeneity power spectrum generated by quantum fluctuations during an early epoch of inflation in the non-flat $Lambda$CDM model. Unlike earlier analyses of non-flat models, which assumed an inconsistent power-law power spectrum of energy density inhomogeneities, we find that the Planck 2015 data alone, and also in conjunction with baryon acoustic oscillation measurements, are reasonably well fit by a closed $Lambda$CDM model in which spatial curvature contributes a few percent of the current cosmological energy density budget. In this model, the measured Hubble constant and non-relativistic matter density parameter are in good agreement with values determined using most other data. Depending on parameter values, the closed $Lambda$CDM model has reduced power, relative to the tilted, spatially-flat $Lambda$CDM case, and can partially alleviate the low multipole CMB temperature anisotropy deficit and can help partially reconcile the CMB anisotropy and weak lensing $sigma_8$ constraints, at the expense of somewhat worsening the fit to higher multipole CMB temperature anisotropy data. Our results are interesting but tentative; a more thorough analysis is needed to properly gauge their significance.
We study observational constraints on the non-metricity $f(Q)$-gravity which reproduces an exact $Lambda$CDM background expansion history while modifying the evolution of linear perturbations. To this purpose we use Cosmic Microwave Background (CMB) radiation, baryonic acoustic oscillations (BAO), redshift-space distortions (RSD), supernovae type Ia (SNIa), galaxy clustering (GC) and weak gravitational lensing (WL) measurements. We set stringent constraints on the parameter of the model controlling the modifications to the gravitational interaction at linear perturbation level. We find the model to be statistically preferred by data over the $Lambda$CDM according to the $chi^2$ and deviance information criterion statistics for the combination with CMB, BAO, RSD and SNIa. This is mostly associated to a better fit to the low-$ell$ tail of CMB temperature anisotropies.
We construct a generalization of the standard $Lambda$CDM model, wherein we simultaneously replace the spatially flat Robertson-Walker metric with its simplest anisotropic generalization (LRS Bianchi I metric), and couple the cold dark matter to the gravity in accordance with the energy-momentum squared gravity (EMSG) of the form $f(T_{mu u}T^{mu u})propto T_{mu u}T^{mu u}$. These two modifications -- namely, two new stiff fluid-like terms of different nature -- can mutually cancel out, i.e., the shear scalar can be screened completely, and reproduce mathematically exactly the same Friedmann equation of the standard $Lambda$CDM model. This evades the BBN limits on the anisotropy, and thereby provides an opportunity to manipulate the cosmic microwave background quadrupole temperature fluctuation at the desired amount. We further discuss the consequences of the model on the very early times and far future of the Universe. This study presents also an example of that the EMSG of the form $f(T_{mu u}T^{mu u})propto T_{mu u}T^{mu u}$, as well as similar type other constructions, is not necessarily relevant only to very early Universe but may even be considered in the context of a major problem of the current cosmology related to the present-day Universe, the so-called $H_0$ problem.
We study the phenomenology of a class of minimally modified gravity theories called $f(mathcal{H})$ theories, in which the usual general relativistic Hamiltonian constraint is replaced by a free function of it. After reviewing the construction of the theory and a consistent matter coupling, we analyze the dynamics of cosmology at the levels of both background and perturbations, and present a concrete example of the theory with a $3$-parameter family of the function $f$. Finally, we compare this example model to Planck data as well as some later-time probes, showing that such a realization of $f(mathcal{H})$ theories fits the data significantly better than the standard $Lambda$CDM model, in particular by modifying gravity at intermediate redshifts, $zsimeq743$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا