No Arabic abstract
This paper studies the inverse Steklov spectral problem for curvilinear polygons. For generic curvilinear polygons with angles less than $pi$, we prove that the asymptotics of Steklov eigenvalues obtained in arXiv:1908.06455 determines, in a constructive manner, the number of vertices and the properly ordered sequence of side lengths, as well as the angles up to a certain equivalence relation. We also present counterexamples to this statement if the generic assumptions fail. In particular, we show that there exist non-isometric triangles with asymptotically close Steklov spectra. Among other techniques, we use a version of the Hadamard--Weierstrass factorisation theorem, allowing us to reconstruct a trigonometric function from the asymptotics of its roots.
We obtain asymptotic formulae for the Steklov eigenvalues and eigenfunctions of curvilinear polygons in terms of their side lengths and angles. These formulae are quite precise: the errors tend to zero as the spectral parameter tends to infinity. The Steklov problem on planar domains with corners is closely linked to the classical sloshing and sloping beach problems in hydrodynamics; as we show it is also related to quantum graphs. Somewhat surprisingly, the arithmetic properties of the angles of a curvilinear polygon have a significant effect on the boundary behaviour of the Steklov eigenfunctions. Our proofs are based on an explicit construction of quasimodes. We use a variety of methods, including ideas from spectral geometry, layer potential analysis, and some new techniques tailored to our problem.
Let us say that an $n$-sided polygon is semi-regular if it is circumscriptible and its angles are all equal but possibly one, which is then larger than the rest. Regular polygons, in particular, are semi-regular. We prove that semi-regular polygons are spectrally determined in the class of convex piecewise smooth domains. Specifically, we show that if $Omega$ is a convex piecewise smooth planar domain, possibly with straight corners, whose Dirichlet or Neumann spectrum coincides with that of an $n$-sided semi-regular polygon $P_n$, then $Omega$ is congruent to $P_n$.
We solve the inverse spectral problem associated with periodic conservative multi-peakon solutions of the Camassa-Holm equation. The corresponding isospectral sets can be identified with finite dimensional tori.
For the Schrodinger equation $-d^2 u/dx^2 + q(x)u = lambda u$ on a finite $x$-interval, there is defined an asymmetry function $a(lambda;q)$, which is entire of order $1/2$ and type $1$ in $lambda$. Our main result identifies the classes of square-integrable potentials $q(x)$ that possess a common asymmetry function. For any given $a(lambda)$, there is one potential for each Dirichlet spectral sequence.
In this paper, we study the bounds for discrete Steklov eigenvalues on trees via geometric quantities. For a finite tree, we prove sharp upper bounds for the first nonzero Steklov eigenvalue by the reciprocal of the size of the boundary and the diameter respectively. We also prove similar estimates for higher order Steklov eigenvalues.