Do you want to publish a course? Click here

Emotional Voice Conversion With Cycle-consistent Adversarial Network

215   0   0.0 ( 0 )
 Added by Songxiang Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Emotional Voice Conversion, or emotional VC, is a technique of converting speech from one emotion state into another one, keeping the basic linguistic information and speaker identity. Previous approaches for emotional VC need parallel data and use dynamic time warping (DTW) method to temporally align the source-target speech parameters. These approaches often define a minimum generation loss as the objective function, such as L1 or L2 loss, to learn model parameters. Recently, cycle-consistent generative adversarial networks (CycleGAN) have been used successfully for non-parallel VC. This paper investigates the efficacy of using CycleGAN for emotional VC tasks. Rather than attempting to learn a mapping between parallel training data using a frame-to-frame minimum generation loss, the CycleGAN uses two discriminators and one classifier to guide the learning process, where the discriminators aim to differentiate between the natural and converted speech and the classifier aims to classify the underlying emotion from the natural and converted speech. The training process of the CycleGAN models randomly pairs source-target speech parameters, without any temporal alignment operation. The objective and subjective evaluation results confirm the effectiveness of using CycleGAN models for emotional VC. The non-parallel training for a CycleGAN indicates its potential for non-parallel emotional VC.



rate research

Read More

Although voice conversion (VC) algorithms have achieved remarkable success along with the development of machine learning, superior performance is still difficult to achieve when using nonparallel data. In this paper, we propose using a cycle-consistent adversarial network (CycleGAN) for nonparallel data-based VC training. A CycleGAN is a generative adversarial network (GAN) originally developed for unpaired image-to-image translation. A subjective evaluation of inter-gender conversion demonstrated that the proposed method significantly outperformed a method based on the Merlin open source neural network speech synthesis system (a parallel VC system adapted for our setup) and a GAN-based parallel VC system. This is the first research to show that the performance of a nonparallel VC method can exceed that of state-of-the-art parallel VC methods.
Emotional voice conversion (EVC) is one way to generate expressive synthetic speech. Previous approaches mainly focused on modeling one-to-one mapping, i.e., conversion from one emotional state to another emotional state, with Mel-cepstral vocoders. In this paper, we investigate building a multi-target EVC (MTEVC) architecture, which combines a deep bidirectional long-short term memory (DBLSTM)-based conversion model and a neural vocoder. Phonetic posteriorgrams (PPGs) containing rich linguistic information are incorporated into the conversion model as auxiliary input features, which boost the conversion performance. To leverage the advantages of the newly emerged neural vocoders, we investigate the conditional WaveNet and flow-based WaveNet (FloWaveNet) as speech generators. The vocoders take in additional speaker information and emotion information as auxiliary features and are trained with a multi-speaker and multi-emotion speech corpus. Objective metrics and subjective evaluation of the experimental results verify the efficacy of the proposed MTEVC architecture for EVC.
Traditional voice conversion(VC) has been focused on speaker identity conversion for speech with a neutral expression. We note that emotional expression plays an essential role in daily communication, and the emotional style of speech can be speaker-dependent. In this paper, we study the technique to jointly convert the speaker identity and speaker-dependent emotional style, that is called expressive voice conversion. We propose a StarGAN-based framework to learn a many-to-many mapping across different speakers, that takes into account speaker-dependent emotional style without the need for parallel data. To achieve this, we condition the generator on emotional style encoding derived from a pre-trained speech emotion recognition(SER) model. The experiments validate the effectiveness of our proposed framework in both objective and subjective evaluations. To our best knowledge, this is the first study on expressive voice conversion.
Mel-frequency filter bank (MFB) based approaches have the advantage of learning speech compared to raw spectrum since MFB has less feature size. However, speech generator with MFB approaches require additional vocoder that needs a huge amount of computation expense for training process. The additional pre/post processing such as MFB and vocoder is not essential to convert real human speech to others. It is possible to only use the raw spectrum along with the phase to generate different style of voices with clear pronunciation. In this regard, we propose a fast and effective approach to convert realistic voices using raw spectrum in a parallel manner. Our transformer-based model architecture which does not have any CNN or RNN layers has shown the advantage of learning fast and solved the limitation of sequential computation of conventional RNN. In this paper, we introduce a vocoder-free end-to-end voice conversion method using transformer network. The presented conversion model can also be used in speaker adaptation for speech recognition. Our approach can convert the source voice to a target voice without using MFB and vocoder. We can get an adapted MFB for speech recognition by multiplying the converted magnitude with phase. We perform our voice conversion experiments on TIDIGITS dataset using the metrics such as naturalness, similarity, and clarity with mean opinion score, respectively.
So far, many of the deep learning approaches for voice conversion produce good quality speech by using a large amount of training data. This paper presents a Deep Bidirectional Long Short-Term Memory (DBLSTM) based voice conversion framework that can work with a limited amount of training data. We propose to implement a DBLSTM based average model that is trained with data from many speakers. Then, we propose to perform adaptation with a limited amount of target data. Last but not least, we propose an error reduction network that can improve the voice conversion quality even further. The proposed framework is motivated by three observations. Firstly, DBLSTM can achieve a remarkable voice conversion by considering the long-term dependencies of the speech utterance. Secondly, DBLSTM based average model can be easily adapted with a small amount of data, to achieve a speech that sounds closer to the target. Thirdly, an error reduction network can be trained with a small amount of training data, and can improve the conversion quality effectively. The experiments show that the proposed voice conversion framework is flexible to work with limited training data and outperforms the traditional frameworks in both objective and subjective evaluations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا