We take a first step towards a holographic description of a black hole by means of a flow equation. We consider a free theory of multiple scalar fields at finite temperature and study its holographic geometry defined through a free flow of the scalar fields. We find that the holographic metric has the following properties: i) It is an asymptotic Anti-de Sitter (AdS) black brane metric with some unknown matter contribution. ii) It has no coordinate singularity and milder curvature singularity. iii) Its time component decays exponentially at a certain AdS radial slice. We find that the matter spreads all over the space, which we speculate to be due to thermal excitation of infinitely many massless higher spin fields. We conjecture that the above three are generic features of a black hole holographically realized by the flow equation method.