Do you want to publish a course? Click here

High density of states in the pseudogap phase of the cuprate superconductor HgBa$_2$CuO$_{4 + delta}$

252   0   0.0 ( 0 )
 Added by Cl\\'ement Girod
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The specific heat $C$ of the single-layer cuprate superconductor HgBa$_2$CuO$_{4 + delta}$ was measured in an underdoped crystal with $T_{rm c} = 72$ K at temperatures down to $2$ K in magnetic fields up to $35$ T, a field large enough to suppress superconductivity at that doping ($p simeq 0.09$). In the normal state at $H = 35$ T, a residual linear term of magnitude $gamma = 12 pm 2$ mJ/K$^2$mol is observed in $C/T$ as $T to 0$, a direct measure of the electronic density of states. This high value of $gamma$ has two major implications. First, it is significantly larger than the value measured in overdoped cuprates outside the pseudogap phase ($p >p^star$), such as La$_{2-x}$Sr$_x$CuO$_4$ and Tl$_2$Ba$_2$CuO$_{6 + delta}$ at $p simeq 0.3$, where $gamma simeq 7$ mJ/K$^2$mol. Given that the pseudogap causes a loss of density of states, and assuming that HgBa$_2$CuO$_{4 + delta}$ has the same $gamma$ value as other cuprates at $p simeq 0.3$, this implies that $gamma$ in HgBa$_2$CuO$_{4 + delta}$ must peak between $p simeq 0.09$ and $p simeq 0.3$, namely at (or near) the critical doping $p^star$ where the pseudogap phase is expected to end ($p^starsimeq 0.2$). Secondly, the high $gamma$ value implies that the Fermi surface must consist of more than the single electron-like pocket detected by quantum oscillations in HgBa$_2$CuO$_{4 + delta}$ at $p simeq 0.09$, whose effective mass $m^star= 2.7times m_0$ yields only $gamma = 4.0$ mJ/K$^2$mol. This missing mass imposes a revision of the current scenario for how pseudogap and charge order respectively transform and reconstruct the Fermi surface of cuprates.



rate research

Read More

The pseudogap phenomenon in cuprates is the most mysterious puzzle in the research of high-temperature superconductivity. In particular, whether the pseudogap is associated with a crossover or phase transition has been a long-standing controversial issue. The tetragonal cuprate HgBa$_2$CuO$_{4+delta}$, with only one CuO$_2$ layer per primitive cell, is an ideal system to tackle this puzzle. Here, we measure the anisotropy of magnetic susceptibility within the CuO$_2$ plane with exceptionally high-precision magnetic torque experiments. Our key finding is that a distinct two-fold in-plane anisotropy sets in below the pseudogap temperature $T^*$, which provides thermodynamic evidence for a nematic phase transition with broken four-fold symmetry. Most surprisingly, the nematic director orients along the diagonal direction of the CuO$_2$ square lattice, in sharp contrast to the bond nematicity reported in various iron-based superconductors and double-layer YBa$_2$Cu$_3$O$_{6+delta}$, where the anisotropy axis is along the Fe-Fe and Cu-O-Cu directions, respectively. Another remarkable feature is that the enhancement of the diagonal nematicity with decreasing temperature is suppressed around the temperature at which short-range charge-density-wave (CDW) formation occurs. This is in stark contrast to YBa$_2$Cu$_3$O$_{6+delta}$, where the bond nematicity is not influenced by the CDW. Our result suggests a competing relationship between diagonal nematic and CDW order in HgBa$_2$CuO$_{4+delta}$.
Antiferromagnetic correlations have been argued to be the cause of the d-wave superconductivity and the pseudogap phenomena exhibited by the cuprates. Although the antiferromagnetic response in the pseudogap state has been reported for a number of compounds, there exists no information for structurally simple HgBa$_2$CuO$_{4+delta}$. Here we report neutron scattering results for HgBa$_2$CuO$_{4+delta}$ (superconducting transition temperature T$_c$ $sim$ 71 K, pseudogap temperature T* $sim$ 305 K) that demonstrate the absence of the two most prominent features of the magnetic excitation spectrum of the cuprates: the X-shaped hourglass response and the resonance mode in the superconducting state. Instead, the response is Y-shaped, gapped, and significantly enhanced below T*, and hence a prominent signature of the pseudogap state.
High magnetic fields have revealed a surprisingly small Fermi-surface in underdoped cuprates, possibly resulting from Fermi-surface reconstruction due to an order parameter that breaks translational symmetry of the crystal lattice. A crucial issue concerns the doping extent of this state and its relationship to the principal pseudogap and superconducting phases. We employ pulsed magnetic field measurements on the cuprate HgBa$_2$CuO$_{4+delta}$ to identify signatures of Fermi surface reconstruction from a sign change of the Hall effect and a peak in the temperature-dependent planar resistivity. We trace the termination of Fermi-surface reconstruction to two hole concentrations where the superconducting upper critical fields are found to be enhanced. One of these points is associated with the pseudogap end-point near optimal doping. These results connect the Fermi-surface reconstruction to both superconductivity and the pseudogap phenomena.
149 - G. Yu , Y. Li , E. M. Motoyama 2008
We present an inelastic neutron scattering study of the structurally simple single-layer compound HgBa$_2$CuO$_{4+delta}$ close to optimal doping ($T_c approx 96$ K). A well-defined antiferromagnetic resonance with energy $omega_r = 56$ meV ($approx 6.8 k_BT_c$) is observed below the superconducting transition temperature $T_c$. The resonance mode is energy-resolution limited and exhibits an intrinsic momentum width of about $0.2 mathrm{mathring{A}^{-1}}$, consistent with prior work on several other cuprates. However, the unusually large value of the mode energy implies a non-universal relationship between $omega_r$ and $T_c$ across different families of cuprates.
Phonons in nearly optimally doped HgBa$_2$CuO$_{4+delta}$ were studied by inelastic X-ray scattering. The dispersion of the low energy modes is well described by a shell model, while the Cu-O bond stretching mode at high energy shows strong softening towards the zone boundary, which deviates strongly from the model. This seems to be common in the hole-doped high-$T_mathrm{c}$ superconducting cuprates, and, based on this work, not related to a lattice distortion specific to each material.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا