Do you want to publish a course? Click here

Updated Parameters and a New Transmission Spectrum of HD 97658b

135   0   0.0 ( 0 )
 Added by Ian Crossfield
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent years have seen increasing interest in the characterization of sub-Neptune sized planets because of their prevalence in the Galaxy, contrasted with their absence in our solar system. HD 97658 is one of the brightest stars hosting a planet of this kind, and we present the transmission spectrum of this planet by combining four HST transits, twelve Spitzer/IRAC transits, and eight MOST transits of this system. Our transmission spectrum has higher signal to noise ratio than that from previous works, and the result suggests that the slight increase in transit depth from wavelength 1.1 to 1.7 microns reported in previous works on the transmission spectrum of this planet is likely systematic. Nonetheless, our atmospheric modeling results are not conclusive as no model provides an excellent match to our data. Nonetheless we find that atmospheres with high C/O ratios (C/O >~ 0.8) and metallicities of >~ 100x solar metallicity are favored. We combine the mid-transit times from all the new Spitzer and MOST observations and obtain an updated orbital period of P=9.489295 +/- 0.000005 d, with a best-fit transit time center at T_0 = 2456361.80690 +/- 0.00038 (BJD). No transit timing variations are found in this system. We also present new measurements of the stellar rotation period (34 +/- 2 d) and stellar activity cycle (9.6 yr) of the host star HD 97658. Finally, we calculate and rank the Transmission Spectroscopy Metric of all confirmed planets cooler than 1000 K and with sizes between 1 and 4 R_Earth. We find that at least a third of small planets cooler than 1000 K can be well characterized using JWST, and of those, HD 97658b is ranked fifth, meaning it remains a high-priority target for atmospheric characterization.



rate research

Read More

125 - S. G. Sousa 2018
Context: Exoplanets have now been proven to be very common. The number of its detections continues to grow following the development of better instruments and missions. One key step for the understanding of these worlds is their characterization, which mostly depend on their host stars. Aims:We perform a significant update of the Stars With ExoplanETs CATalog (SWEET-Cat), a unique compilation of precise stellar parameters for planet-host stars provided for the exoplanet community. Methods: We made use of high-resolution spectra for planet-host stars, either observed by our team or found in several public archives. The new spectroscopic parameters were derived for the spectra following the same homogeneous process (ARES+MOOG). The host star parameters were then merged together with the planet properties listed in exoplanet.eu to perform simple data analysis. Results: We present new spectroscopic homogeneous parameters for 106 planet-host stars. Sixty-three planet hosts are also reviewed with new parameters. We also show that there is a good agreement between stellar parameters derived for the same star but using spectra obtained from different spectrographs. The planet-metallicity correlation is reviewed showing that the metallicity distribution of stars hosting low-mass planets (below 30 M$_{oplus}$) is indistinguishable from that from the solar neighborhood sample in terms of metallicity distribution.
Recent results from the Kepler mission indicate that super-Earths (planets with masses between 1-10 times that of the Earth) are the most common kind of planet around nearby Sun-like stars. These planets have no direct solar system analogue, and are currently one of the least well-understood classes of extrasolar planets. Many super-Earths have average densities that are consistent with a broad range of bulk compositions, including both water-dominated worlds and rocky planets covered by a thick hydrogen and helium atmosphere. Measurements of the transmission spectra of these planets offer the opportunity to resolve this degeneracy by directly constraining the scale heights and corresponding mean molecular weights of their atmospheres. We present Hubble Space Telescope near-infrared spectroscopy of two transits of the newly discovered transiting super-Earth HD 97658b. We use the Wide Field Camera 3s scanning mode to measure the wavelength-dependent transit depth in thirty individual bandpasses. Our averaged differential transmission spectrum has a median 1 sigma uncertainty of 23 ppm in individual bins, making this the most precise observation of an exoplanetary transmission spectrum obtained with WFC3 to date. Our data are inconsistent with a cloud-free solar metallicity atmosphere at the 10 sigma level. They are consistent at the 0.4 sigma level with a flat line model, as well as effectively flat models corresponding to a metal-rich atmosphere or a solar metallicity atmosphere with a cloud or haze layer located at pressures of 10 mbar or higher.
Some of the exoplanets so far observed show featureless or flat transmission spectra, possibly indicating the existence of clouds and/or haze in their atmospheres. Thanks to its large aperture size and broad wavelength coverage, JWST is expected to enable detailed investigation of exoplanet atmospheres, which could provide important constraints on the atmospheric composition obscured by clouds/haze. Here, we use four warm ($lesssim 1000$ K) planets suitable for atmospheric characterization via transmission spectroscopy, GJ 1214b, GJ 436b, HD 97658b, and Kepler-51b, as examples to explore molecular absorption features detectable by JWST even in the existence of hydrocarbon haze in the atmospheres. We simulate photochemistry, the growth of hydrocarbon haze particles, and transmission spectra for the atmospheres of these four planets. Among the planetary parameters considered, super-Earths with hazy, relatively hydrogen-rich atmospheres are mostly expected to produce detectable molecular absorption features such as a quite prominent $mathrm{CH_4}$ feature at 3.3 ${rm mu}$m even for the extreme case of the most efficient production of photochemical haze. For a planet that has extremely low gravity, such as Kepler-51b, haze particles grow significantly large in the upper atmosphere due to the small sedimentation velocity, resulting in the featureless or flat transmission spectrum in a wide wavelength range. This investigation shows that the transmission spectra with muted features measured by HST in most cases do not preclude strong features at the longer wavelengths accessible by JWST.
Context. Precise stellar parameters are crucial in exoplanet research for correctly determining of the planetary parameters. For stars hosting a transiting planet, determining of the planetary mass and radius depends on the stellar mass and radius, which in turn depend on the atmospheric stellar parameters. Different methods can provide different results, which leads to different planet characteristics.}%Spectroscopic surface gravities have shown to be poorly constrained, but the photometry of the transiting planet can provide an independent measurement of the surface gravity. Aims. In this paper, we use a uniform method to spectroscopically derive stellar atmospheric parameters, chemical abundances, stellar masses, and stellar radii for a sample of 90 transit hosts. Surface gravities are also derived photometrically using the stellar density as derived from the light curve. We study the effect of using these different surface gravities on the determination of the chemical abundances and the stellar mass and radius. Methods. A spectroscopic analysis based on Kurucz models in LTE was performed through the MOOG code to derive the atmospheric parameters and the chemical abundances. The photometric surface gravity was determined through isochrone fitting and the use of the stellar density, directly determined from the light curve. Stellar masses and radii are determined through calibration formulae. Results. Spectroscopic and photometric surface gravities differ, but this has very little effect on the precise determination of the stellar mass in our spectroscopic analysis. The stellar radius, and hence the planetary radius, is most affected by the surface gravity discrepancies. For the chemical abundances, the difference is, as expected, only noticable for the abundances derived from analyzing of lines of ionized species.
It is still being debated whether the well-known metallicity - giant planet correlation for dwarf stars is also valid for giant stars. For this reason, having precise metallicities is very important. Different methods can provide different results that lead to discrepancies in the analysis of planet hosts. To study the impact of different analyses on the metallicity scale for evolved stars, we compare different iron line lists to use in the atmospheric parameter derivation of evolved stars. Therefore, we use a sample of 71 evolved stars with planets. With these new homogeneous parameters, we revisit the metallicity - giant planet connection for evolved stars. A spectroscopic analysis based on Kurucz models in local thermodynamic equilibrium (LTE) was performed through the MOOG code to derive the atmospheric parameters. Two different iron line list sets were used, one built for cool FGK stars in general, and the other for giant FGK stars. Masses were calculated through isochrone fitting, using the Padova models. Kolmogorov-Smirnov tests (K-S tests) were then performed on the metallicity distributions of various different samples of evolved stars and red giants. All parameters compare well using a line list set, designed specifically for cool and solar-like stars to provide more accurate temperatures. All parameters derived with this line list set are preferred and are thus adopted for future analysis. We find that evolved planet hosts are more metal-poor than dwarf stars with giant planets. However, a bias in giant stellar samples that are searched for planets is present. Because of a colour cut-off, metal-rich low-gravity stars are left out of the samples, making it hard to compare dwarf stars with giant stars. Furthermore, no metallicity enhancement is found for red giants with planets ($log g < 3.0$,dex) with respect to red giants without planets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا