Binary classification is a fundamental problem in machine learning. Recent development of quantum similarity-based binary classifiers and kernel method that exploit quantum interference and feature quantum Hilbert space opened up tremendous opportunities for quantum-enhanced machine learning. To lay the fundamental ground for its further advancement, this work extends the general theory of quantum kernel-based classifiers. Existing quantum kernel-based classifiers are compared and the connection among them is analyzed. Focusing on the squared overlap between quantum states as a similarity measure, the essential and minimal ingredients for the quantum binary classification are examined. The classifier is also extended concerning various aspects, such as data type, measurement, and ensemble learning. The validity of the Hilbert-Schmidt inner product, which becomes the squared overlap for pure states, as a positive definite and symmetric kernel is explicitly shown, thereby connecting the quantum binary classifier and kernel methods.