Do you want to publish a course? Click here

The formation of single neutron-stars from double white-dwarf mergers via accretion-induced collapse

130   0   0.0 ( 0 )
 Added by Dongdong Liu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The merging of double white dwarfs (WDs) may produce the events of accretion-induced collapse (AIC) and form single neutron stars (NSs). Meanwhile, it is also notable that the recently proposed WD+He subgiant scenario has a significant contribution to the production of massive double WDs, in which the primary WD grows in mass by accreting He-rich material from a He subgiant companion. In this work, we aim to study the binary population synthesis (BPS) properties of AIC events from the double WD mergers by considering the classical scenarios and also the contribution of theWD+He subgiant scenario to the formation of double WDs. First, we provided a dense and large model grid of WD+He star systems for producing AIC events through the double WD merger scenario. Secondly, we performed several sets of BPS calculations to obtain the rates and single NS number in our Galaxy. We found that the rates of AIC events from the double WD mergers in the Galaxy are in the range of 1.4-8.9*10^-3 yr^-1 for all ONe/CO WD+ONe/CO WD mergers, and in the range of 0.3-3.8*10^-3 yr^-1 when double COWD mergers are not considered.We also found that the number of single NSs from AIC events in our Galaxy may range from 0.328*10^7 to 1.072*10^8. The chirp mass of double WDs for producing AIC events distribute in the range of 0.55-1.25 Msun. We estimated that more than half of doubleWDs for producing AIC events are capable to be observed by the future space-based gravitational wave detectors.



rate research

Read More

A leading formation scenario for R Coronae Borealis (RCB) stars invokes the merger of degenerate He and CO white dwarfs (WD) in a binary. The observed ratio of 16O/18O for RCB stars is in the range of 0.3-20 much smaller than the solar value of ~500. In this paper, we investigate whether such a low ratio can be obtained in simulations of the merger of a CO and a He white dwarf. We present the results of five 3-dimensional hydrodynamic simulations of the merger of a double white dwarf system where the total mass is 0.9 Mdot and the initial mass ratio (q) varies between 0.5 and 0.99. We identify in simulations with $qlesssim0.7$ a feature around the merged stars where the temperatures and densities are suitable for forming 18O. However, more 16O is being dredged-up from the C- and O-rich accretor during the merger than the amount of 18O that is produced. Therefore, on a dynamical time scale over which our hydrodynamics simulation runs, a 16O/18O ratio of ~2000 in the best case is found. If the conditions found in the hydrodynamic simulations persist for 10^6 seconds the oxygen ratio drops to 16 in one case studied, while in a hundred years it drops to ~4 in another case studied, consistent with the observed values in RCB stars. Therefore, the merger of two white dwarfs remains a strong candidate for the formation of these enigmatic stars.
Recently observed pulsars with masses $sim 1.1 ~M_{odot}$ challenge the conventional neutron star (NS) formation path by core-collapse supernova (CCSN). Using spherically symmetric hydrodynamics simulations, we follow the collapse of a massive white dwarf (WD) core triggered by electron capture, until the formation of a proto-NS (PNS). For initial WD models with the same central density, we study the effects of a static, compact dark matter (DM) admixed core on the collapse and bounce dynamics and mass of the PNS, with DM mass $sim 0.01 ~M_{odot}$. We show that increasing the admixed DM mass generally leads to slower collapse and smaller PNS mass, down to about 1.0 $M_{odot}$. Our results suggest that the accretion-induced collapse of dark matter admixed white dwarfs can produce low-mass neutron stars, such as the observed low-mass pulsar J0453+1559, which cannot be obtained by conventional NS formation path by CCSN.
We present the results of an investigation of the dredge-up and mixing during the merger of two white dwarfs with different chemical compositions by conducting hydrodynamic simulations of binary mergers for three representative mass ratios. In all the simulations, the total mass of the two white dwarfs is $lesssim1.0~{rm M_odot}$. Mergers involving a CO and a He white dwarf have been suggested as a possible formation channel for R Coronae Borealis type stars, and we are interested in testing if such mergers lead to conditions and outcomes in agreement with observations. Even if the conditions during the merger and subsequent nucleosynthesis favor the production of $^{18}{mathrm O}$, the merger must avoid dredging up large amounts of $^{16}{mathrm O}$, or else it will be difficult to produce sufficient $^{18}{mathrm O}$ to explain the oxygen ratio observed to be of order unity. We performed a total of 9 simulations using two different grid-based hydrodynamics codes using fixed and adaptive meshes, and one smooth particle hydrodynamics (SPH) code. We find that in most of the simulations, $>10^{-2}~{rm M_odot}$ of $^{16}{mathrm O}$ is indeed dredged up during the merger. However, in SPH simulations where the accretor is a hybrid He/CO white dwarf with a $sim 0.1~{rm M_odot}$ layer of helium on top, we find that no $^{16}{mathrm O}$ is being dredged up, while in the $q=0.8$ simulation $<10^{-4}~{rm M_odot}$ of $^{16}{mathrm O}$ has been brought up, making a WD binary consisting of a hybrid CO/He WD and a companion He WD an excellent candidate for the progenitor of RCB stars.
126 - Iminhaji Ablimit 2019
Redbacks (RBs) and black widows (BWs) are two peculiar classes of eclipsing millisecond pulsars (MSPs). The accretion-induced collapse (AIC) of an oxygen/neon/magnesium composition white dwarf to a neutron star has been suggested as one possible formation pathway for those two classes of MSPs. However, it is difficult to produce all known MSPs with the traditional AIC scenario. In this study by using the MESA stellar evolution code, we investigate the detailed pre-AIC evolution of magnetized white dwarf binaries with the magnetic confinement model where the high magnetic field strength of the white dwarf can confine the accreted matter in the polar caps. We find that the initial donor mass and orbital periods in our model can be lower than that of previous traditional AIC models. We also present post-AIC evolution models to form RBs and BWs with and without the spin down luminosity evaporation of MSPs. Under the magnetic confinement model and evaporative winds (with corresponding angular momentum loss from the surface of the donor star), the companion masses and orbital periods of all known RBs can be covered and a number of binaries can evolve to become BWs.
Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs), formed via type Ib/c core-collapse supernovae (SNe), which have been spun up to high rotation rates via accretion from a companion star in a low-mass X-ray binary (LMXB). In an alternative formation channel, NSs are produced via the accretion-induced collapse (AIC) of a massive white dwarf (WD) in a close binary. Here we investigate binary evolution leading to AIC and examine if NSs formed in this way can subsequently be recycled to form MSPs and, if so, how they can observationally be distinguished from pulsars formed via the standard core-collapse SN channel in terms of their masses, spins, orbital periods and space velocities. Numerical calculations with a detailed stellar evolution code were used for the first time to study the combined pre- and post-AIC evolution of close binaries. We investigated the mass transfer onto a massive WD in 240 systems with three different types of non-degenerate donor stars: main-sequence stars, red giants, and helium stars. When the WD is able to accrete sufficient mass (depending on the mass-transfer rate and the duration of the accretion phase) we assumed it collapses to form a NS and we studied the dynamical effects of this implosion on the binary orbit. Subsequently, we followed the mass-transfer epoch which resumes once the donor star refills its Roche lobe and calculated the continued LMXB evolution until the end. We demonstrate that the final properties of these MSPs are, in general, remarkably similar to those of MSPs formed via the standard core-collapse SN channel. However, the resultant MSPs created via the AIC channel preferentially form in certain orbital period intervals. Finally, we discuss the link between AIC and young NSs in globular clusters. Our calculations are also applicable to progenitor binaries of SNe Ia under certain conditions. [Abridged]
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا