Do you want to publish a course? Click here

Decomposition of a symbolic element over a countable amenable group into blocks approximating ergodic measures

107   0   0.0 ( 0 )
 Added by Mateusz Wi\\k{e}cek
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Consider a subshift over a finite alphabet, $Xsubset Lambda^{mathbb Z}$ (or $XsubsetLambda^{mathbb N_0}$). With each finite block $BinLambda^k$ appearing in $X$ we associate the empirical measure ascribing to every block $CinLambda^l$ the frequency of occurrences of $C$ in $B$. By comparing the values ascribed to blocks $C$ we define a metric on the combined space of blocks $B$ and probability measures $mu$ on $X$, whose restriction to the space of measures is compatible with the weak-$star$ topology. Next, in this combined metric space we fix an open set $mathcal U$ containing all ergodic measures, and we say that a block $B$ is ergodic if $Binmathcal U$. In this paper we prove the following main result: Given $varepsilon>0$, every $xin X$ decomposes as a concatenation of blocks of bounded lengths in such a way that, after ignoring a set $M$ of coordinates of upper Banach density smaller than $varepsilon$, all blocks in the decomposition are ergodic. The second main result concerns subshifts whose set of ergodic measures is closed. We show that, in this case, no matter how $xin X$ is partitioned into blocks (as long as their lengths are sufficiently large and bounded), after ignoring a set $M$ of upper Banach density smaller than $varepsilon$, all blocks in the decomposition are ergodic. The first half of the paper is concluded by examples showing, among other things, that the small set $M$, in both main theorems, cannot be avoided. The second half of the paper is devoted to generalizing the two main results described above to subshifts $XsubsetLambda^G$ with the action of a countable amenable group $G$. The role of long blocks is played by blocks whose domains are members of a Fo lner sequence while the decomposition of $xin X$ into blocks (of which majority is ergodic) is obtained with the help of a congruent system of tilings.



rate research

Read More

In this paper we generalize Kingmans sub-additive ergodic theorem to a large class of infinite countable discrete amenable group actions.
136 - Leiye Xu , Liqi Zheng 2021
The weak mean equicontinuous properties for a countable discrete amenable group $G$ acting continuously on a compact metrizable space $X$ are studied. It is shown that the weak mean equicontinuity of $(X times X,G)$ is equivalent to the mean equicontinuity of $(X,G)$. Moreover, when $(X,G)$ has full measure center or $G$ is abelian, it is shown that $(X,G)$ is weak mean equicontinuous if and only if all points in $X$ are uniquely ergodic points and the map $x to mu_x^G$ is continuous, where $mu_x^G$ is the unique ergodic measure on ${ol{Orb(x)}, G}$.
Symbolic Extension Entropy Theorem (SEET) describes the possibility of a lossless digitalization of a dynamical system by extending it to a subshift. It gives an estimate on the entropy of symbolic extensions (and the necessary number of symbols). Unlike in the measure-theoretic case, where Kolmogorov--Sinai entropy is the estimate, in the topological setup the task reaches beyond the classical theory of entropy. Tools from an extended theory of entropy structures are needed. The main goal of this paper is to prove the SEET for actions of countable amenable groups: Let a countable amenable group $G$ act by homeomorphisms on a compact metric space $X$ and let $mathcal M_G(X)$ denote the simplex of $G$-invariant probability measures on $X$. A function $E $ on $mathcal M_G(X)$ equals the extension entropy function $h^pi$ of a symbolic extension $pi:(Y,G)to (X,G)$, where $h^pi(mu)=sup{h_ u(Y,G): uinpi^{-1}(mu)}$ ($muinmathcal M_G(X)$), if and only if $E $ is an affine superenvelope of the entropy structure of $(X,G)$. The statement is preceded by presentation of the concepts of an entropy structure and superenvelopes, adapted from $mathbb Z$-actions. In full generality we prove a slightly weaker version of SEET, in which symbolic extensions are replaced by quasi-symbolic extensions, i.e., extensions in form of a joining of a subshift with a zero-entropy tiling system. The notion of a tiling system is a subject of earlier works and in this paper we review and complement the theory developed there. The full version of the SEET is proved for groups which are either residually finite or enjoy the comparison property. In order to describe the range of our theorem, we devote a large portion of the paper to the comparison property. Our main result in this aspect shows that all subexponential groups have the comparison property (and thus satisfy the SEET).
422 - Dou Dou , Ruifeng Zhang 2017
In this short note, for countably infinite amenable group actions, we provide topological proofs for the following results: Bowen topological entropy (dimensional entropy) of the whole space equals the usual topological entropy along tempered F{o}lner sequences; the Hausdorff dimension of an amenable subshift (for certain metric associated to some F{o}lner sequence) equals its topological entropy. This answers questions by Zheng and Chen (Israel Journal of Mathematics 212 (2016), 895-911) and Simpson (Theory Comput. Syst. 56 (2015), 527-543).
The paper offers a thorough study of multiorders and their applications to measure-preserving actions of countable amenable groups. By a multiorder on a countable group we mean any probability measure $ u$ on the collection $mathcal O$ of linear orders of type $mathbb Z$ on $G$, invariant under the natural action of $G$ on such orders. Every free measure-preserving $G$-action $(X,mu,G)$ has a multiorder $(mathcal O, u,G)$ as a factor and has the same orbits as the $mathbb Z$-action $(X,mu,S)$, where $S$ is the successor map determined by the multiorder factor. The sub-sigma-algebra $Sigma_{mathcal O}$ associated with the multiorder factor is invariant under $S$, which makes the corresponding $mathbb Z$-action $(mathcal O, u,tilde S)$ a factor of $(X,mu,S)$. We prove that the entropy of any $G$-process generated by a finite partition of $X$, conditional with respect to $Sigma_{mathcal O}$, is preserved by the orbit equivalence with $(X,mu,S)$. Furthermore, this entropy can be computed in terms of the so-called random past, by a formula analogous to the one known for $mathbb Z$-actions. This fact is applied to prove a variant of a result by Rudolph and Weiss. The original theorem states that orbit equivalence between free actions of countable amenable groups preserves conditional entropy with respect to a sub-sigma-algebra $Sigma$, as soon as the orbit change is $Sigma$-measurable. In our variant, we replace the measurability assumption by a simpler one: $Sigma$ should be invariant under both actions and the actions on the resulting factor should be free. In conclusion we prove that the Pinsker sigma-algebra of any $G$-process can be identified (with probability 1) using the following algorithm: (1) fix an arbitrary multiorder on $G$, (2) select any order from the support of that multiorder, (3) in the process, find the remote past along the selected order.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا