Do you want to publish a course? Click here

The Evolution Of The Inner Regions of Protoplanetary Disks

87   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a study of the evolution of the inner few astronomical units of protoplanetary disks around low-mass stars. We consider nearby stellar groups with ages spanning from 1 to 11 Myr, distributed into four age bins. Combining PANSTARSS photometry with spectral types, we derive the reddening consistently for each star, which we use (1) to measure the excess emission above the photosphere with a new indicator of IR excess and (2) to estimate the mass accretion rate ($dot{M}$) from the equivalent width of the H$alpha$ line. Using the observed decay of $dot{M}$ as a constrain to fix the initial conditions and the viscosity parameter of viscous evolutionary models, we use approximate Bayesian modeling to infer the dust properties that produce the observed decrease of the IR excess with age, in the range between 4.5 and $24,mu$m. We calculate an extensive grid of irradiated disk models with a two-layered wall to emulate a curved dust inner edge and obtain the vertical structure consistent with the surface density predicted by viscous evolution. We find that the median dust depletion in the disk upper layers is $epsilon sim 3 times 10^{-3}$ at 1.5 Myr, consistent with previous studies, and it decreases to $epsilon sim 3 times 10^{-4}$ by 7.5 Myr. We include photoevaporation in a simple model of the disk evolution and find that a photoevaporative wind mass-loss rate of $sim 1 -3 times 10 ^{-9} , M_{odot}yr^{-1}$ agrees with the decrease of the disk fraction with age reasonably well. The models show the inward evolution of the H$_2$O and CO snowlines.



rate research

Read More

We report FUV, optical, and NIR observations of three T Tauri stars in the Orion OB1b subassociation with H$alpha$ equivalent widths consistent with low or absent accretion and various degrees of excess flux in the mid-infrared. We aim to search for evidence of gas in the inner disk in HST ACS/SBC spectra, and to probe the accretion flows onto the star using H$alpha$ and He I $lambda$10830 in spectra obtained at the Magellan and SOAR telescopes. At the critical age of 5 Myr, the targets are at different stages of disk evolution. One of our targets is clearly accreting, as shown by redshifted absorption at free-fall velocities in the He I line and wide wings in H$alpha$; however, a marginal detection of FUV H$_2$ suggests that little gas is present in the inner disk, although the spectral energy distribution indicates that small dust still remains close to the star. Another target is surrounded by a transitional disk, with an inner cavity in which little sub-micron dust remains. Still, the inner disk shows substantial amounts of gas, accreting onto the star at a probably low, but uncertain rate. The third target lacks both a He I line or FUV emission, consistent with no accretion or inner gas disk; its very weak IR excess is consistent with a debris disk. Different processes occurring in targets with ages close to the disk dispersal time suggest that the end of accretion phase is reached in diverse ways.
Near-IR observations of protoplanetary disks provide information about the properties of the inner disk. High resolution spectra of abundant molecules such as CO can be used to determine the disk structure in the warm inner parts. The $v2/v1$ ro-vibrational ratio of $v_{1-0}$ and $v_{2-1}$ transitions has been recently observed to follow distinct trends with the CO emitting radius, in a sample of TTauri and Herbig disks; these trends have been empirically interpreted as due to inner disk depletion from gas and dust. In this work we use existing thermo-chemical disk models to explore the interpretation of these observed trends in ro-vibrational CO emission. We use the radiation thermo-chemical code ProDiMo, exploring a set of previously published models with different disk properties and varying one parameter at a time: the inner radius, the dust-to-gas mass ratio, the gas mass. In addition, we use models where we change the surface density power law index, and employ a larger set of CO ro-vibrational levels, including also fluorescence from the first electronic state. We investigate these models for both TTauri and Herbig star disks. Finally, we include a set of DIANA models for individual TTauri and Herbig disks which were constructed to reproduce a large set of multi-wavelength observations.
Far-infrared and (sub)millimeter fluxes can be used to study dust in protoplanetary disks, the building blocks of planets. Here, we combine observations from the Herschel Space Observatory with ancillary data of 284 protoplanetary disks in the Taurus, Chamaeleon I, and Ophiuchus star-forming regions, covering from the optical to mm/cm wavelengths. We analyze their spectral indices as a function of wavelength and determine their (sub)millimeter slopes when possible. Most disks display observational evidence of grain growth, in agreement with previous studies. No correlation is found between other tracers of disk evolution and the millimeter spectral indices. A simple disk model is used to fit these sources, and we derive posterior distributions for the optical depth at 1.3 mm and 10 au, the disk temperature at this same radius, and the dust opacity spectral index. We find the fluxes at 70 microns to correlate strongly with disk temperatures at 10 au, as derived from these simple models. We find tentative evidence for spectral indices in Chamaeleon I being steeper than those of disks in Taurus/Ophiuchus, although more millimeter observations are needed to confirm this trend and identify its possible origin. Additionally, we determine the median spectral energy distribution of each region and find them to be similar across the entire wavelength range studied, possibly due to the large scatter in disk properties and morphologies.
We present three-dimensional simulations of a protoplanetary disk subject to the effect of a nearby (0.3pc distant) supernova, using a time-dependent flow from a one dimensional numerical model of the supernova remnant (SNR), in addition to constant peak ram pressure simulations. Simulations are performed for a variety of disk masses and inclination angles. We find disk mass-loss rates that are typically 1e-7 to 1e-6 Msol/yr (but peak near 1e-5 Msol/yr during the instantaneous stripping phase) and are sustained for around 200 yr. Inclination angle has little effect on the mass loss unless the disk is close to edge-on. Inclined disks also strip asymmetrically with the trailing edge ablating more easily. Since the interaction lasts less than one outer rotation period, there is not enough time for the disk to restore its symmetry, leaving the disk asymmetrical after the flow has passed. Of the low-mass disks considered, only the edge-on disk is able to survive interaction with the SNR (with 50% of its initial mass remaining). At the end of the simulations, disks that survive contain fractional masses of SN material up to 5e-6. This is too low to explain the abundance of short-lived radionuclides in the early solar system, but a larger disk and the inclusion of radiative cooling might allow the disk to capture a higher fraction of SN material.
Using numerical hydrodynamics simulations we studied the gravitational collapse of pre-stellar cores of sub-solar mass embedded into a low-density external environment. Four models with different magnitude and direction of rotation of the external environment with respect to the central core were studied and compared with an isolated model. We found that the infall of matter from the external environment can significantly alter the disk properties as compared to those seen in the isolated model. Depending on the magnitude and direction of rotation of the external environment, a variety of disks can form including compact (<= 200 AU) ones shrinking in size due to infall of external matter with low angular momentum, as well as extended disks forming due to infall of external matter with high angular momentum. The former are usually stable against gravitational fragmentation, while the latter are prone to fragmentation and formation of stellar systems with sub-stellar/very-low-mass companions. In the case of counterrotating external environment, very compact (< 5 AU) and short-lived (<= a few * 10^5 yr) disks can form when infalling material has low angular momentum. The most interesting case is found for the infall of counterrotating external material with high angular momentum, leading to the formation of counterrotating inner and outer disks separated by a deep gap at a few tens AU. The gap migrates inward due to accretion of the inner disk onto the protostar, turns into a central hole, and finally disappears giving way to the outer strongly gravitationally unstable disk. This model may lead to the emergence of a transient stellar system with sub-stellar/very-low-mass components counterrotating with respect to that of the star.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا