Do you want to publish a course? Click here

Near-linear convergence of the Random Osborne algorithm for Matrix Balancing

297   0   0.0 ( 0 )
 Added by Jason Altschuler
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We revisit Matrix Balancing, a pre-conditioning task used ubiquitously for computing eigenvalues and matrix exponentials. Since 1960, Osbornes algorithm has been the practitioners algorithm of choice and is now implemented in most numerical software packages. However, its theoretical properties are not well understood. Here, we show that a simple random variant of Osbornes algorithm converges in near-linear time in the input sparsity. Specifically, it balances $Kinmathbb{R}_{geq 0}^{ntimes n}$ after $O(mepsilon^{-2}logkappa)$ arithmetic operations, where $m$ is the number of nonzeros in $K$, $epsilon$ is the $ell_1$ accuracy, and $kappa=sum_{ij}K_{ij}/(min_{ij:K_{ij} eq 0}K_{ij})$ measures the conditioning of $K$. Previous work had established near-linear runtimes either only for $ell_2$ accuracy (a weaker criterion which is less relevant for applications), or through an entirely different algorithm based on (currently) impractical Laplacian solvers. We further show that if the graph with adjacency matrix $K$ is moderately connected--e.g., if $K$ has at least one positive row/column pair--then Osbornes algorithm initially converges exponentially fast, yielding an improved runtime $O(mepsilon^{-1}logkappa)$. We also address numerical precision by showing that these runtime bounds still hold when using $O(log(nkappa/epsilon))$-bit numbers. Our results are established through an intuitive potential argument that leverages a convex optimization perspective of Osbornes algorithm, and relates the per-iteration progress to the current imbalance as measured in Hellinger distance. Unlike previous analyses, we critically exploit log-convexity of the potential. Our analysis extends to other variants of Osbornes algorithm: along the way, we establish significantly improved runtime bounds for cyclic, greedy, and parallelized variants.



rate research

Read More

77 - Vincenzo Bonifaci 2016
We consider a system of nonlinear ordinary differential equations for the solution of linear programming (LP) problems that was first proposed in the mathematical biology literature as a model for the foraging behavior of acellular slime mold Physarum polycephalum, and more recently considered as a method to solve LPs. We study the convergence time of the continuous Physarum dynamics in the context of the linear programming problem, and derive a new time bound to approximate optimality that depends on the relative entropy between project
119 - Pini Zilber , Boaz Nadler 2021
Low rank matrix recovery problems, including matrix completion and matrix sensing, appear in a broad range of applications. In this work we present GNMR -- an extremely simple iterative algorithm for low rank matrix recovery, based on a Gauss-Newton linearization. On the theoretical front, we derive recovery guarantees for GNMR in both the matrix sensing and matrix completion settings. A key property of GNMR is that it implicitly keeps the factor matrices approximately balanced throughout its iterations. On the empirical front, we show that for matrix completion with uniform sampling, GNMR performs better than several popular methods, especially when given very few observations close to the information limit.
96 - Kai Du , Qingxin Meng , 2020
This paper studies an infinite horizon optimal control problem for discrete-time linear systems and quadratic criteria, both with random parameters which are independent and identically distributed with respect to time. A classical approach is to solve an algebraic Riccati equation that involves mathematical expectations and requires certain statistical information of the parameters. In this paper, we propose an online iterative algorithm in the spirit of Q-learning for the situation where only one random sample of parameters emerges at each time step. The first theorem proves the equivalence of three properties: the convergence of the learning sequence, the well-posedness of the control problem, and the solvability of the algebraic Riccati equation. The second theorem shows that the adaptive feedback control in terms of the learning sequence stabilizes the system as long as the control problem is well-posed. Numerical examples are presented to illustrate our results.
We develop a novel variant of the classical Frank-Wolfe algorithm, which we call spectral Frank-Wolfe, for convex optimization over a spectrahedron. The spectral Frank-Wolfe algorithm has a novel ingredient: it computes a few eigenvectors of the gradient and solves a small-scale SDP in each iteration. Such procedure overcomes slow convergence of the classical Frank-Wolfe algorithm due to ignoring eigenvalue coalescence. We demonstrate that strict complementarity of the optimization problem is key to proving linear convergence of various algorithms, such as the spectral Frank-Wolfe algorithm as well as the projected gradient method and its accelerated version.
Classical iterative algorithms for linear system solving and regression are brittle to the condition number of the data matrix. Even a semi-random adversary, constrained to only give additional consistent information, can arbitrarily hinder the resulting computational guarantees of existing solvers. We show how to overcome this barrier by developing a framework which takes state-of-the-art solvers and robustifies them to achieve comparable guarantees against a semi-random adversary. Given a matrix which contains an (unknown) well-conditioned submatrix, our methods obtain computational and statistical guarantees as if the entire matrix was well-conditioned. We complement our theoretical results with preliminary experimental evidence, showing that our methods are effective in practice.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا