Do you want to publish a course? Click here

Computer Vision and Abnormal Patient Gait Assessment a Comparison of Machine Learning Models

57   0   0.0 ( 0 )
 Added by Benson Babu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Abnormal gait, its associated falls and complications have high patient morbidity, mortality. Computer vision detects, predicts patient gait abnormalities, assesses fall risk and serves as clinical decision support tool for physicians. This paper performs a systematic review of how computer vision, machine learning models perform an abnormal patients gait assessment. Computer vision is beneficial in gait analysis, it helps capture the patient posture. Several literature suggests the use of different machine learning algorithms such as SVM, ANN, K-Star, Random Forest, KNN, among others to perform the classification on the features extracted to study patient gait abnormalities.



rate research

Read More

133 - Laurent Perrinet 2017
The representation of images in the brain is known to be sparse. That is, as neural activity is recorded in a visual area ---for instance the primary visual cortex of primates--- only a few neurons are active at a given time with respect to the whole population. It is believed that such a property reflects the efficient match of the representation with the statistics of natural scenes. Applying such a paradigm to computer vision therefore seems a promising approach towards more biomimetic algorithms. Herein, we will describe a biologically-inspired approach to this problem. First, we will describe an unsupervised learning paradigm which is particularly adapted to the efficient coding of image patches. Then, we will outline a complete multi-scale framework ---SparseLets--- implementing a biologically inspired sparse representation of natural images. Finally, we will propose novel methods for integrating prior information into these algorithms and provide some preliminary experimental results. We will conclude by giving some perspective on applying such algorithms to computer vision. More specifically, we will propose that bio-inspired approaches may be applied to computer vision using predictive coding schemes, sparse models being one simple and efficient instance of such schemes.
Herbarium contains treasures of millions of specimens which have been preserved for several years for scientific studies. To speed up more scientific discoveries, a digitization of these specimens is currently on going to facilitate easy access and sharing of its data to a wider scientific community. Online digital repositories such as IDigBio and GBIF have already accumulated millions of specimen images yet to be explored. This presents a perfect time to automate and speed up more novel discoveries using machine learning and computer vision. In this study, a thorough analysis and comparison of more than 50 peer-reviewed studies which focus on application of computer vision and machine learning techniques to digitized herbarium specimen have been examined. The study categorizes different techniques and applications which have been commonly used and it also highlights existing challenges together with their possible solutions. It is our hope that the outcome of this study will serve as a strong foundation for beginners of the relevant field and will also shed more light for both computer science and ecology experts.
We introduce 3DB: an extendable, unified framework for testing and debugging vision models using photorealistic simulation. We demonstrate, through a wide range of use cases, that 3DB allows users to discover vulnerabilities in computer vision systems and gain insights into how models make decisions. 3DB captures and generalizes many robustness analyses from prior work, and enables one to study their interplay. Finally, we find that the insights generated by the system transfer to the physical world. We are releasing 3DB as a library (https://github.com/3db/3db) alongside a set of example analyses, guides, and documentation: https://3db.github.io/3db/ .
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Joint image-text embedding extracted from medical images and associated contextual reports is the bedrock for most biomedical vision-and-language (V+L) tasks, including medical visual question answering, clinical image-text retrieval, clinical report auto-generation. In this study, we adopt four pre-trained V+L models: LXMERT, VisualBERT, UNIER and PixelBERT to learn multimodal representation from MIMIC-CXR radiographs and associated reports. The extrinsic evaluation on OpenI dataset shows that in comparison to the pioneering CNN-RNN model, the joint embedding learned by pre-trained V+L models demonstrate performance improvement in the thoracic findings classification task. We conduct an ablation study to analyze the contribution of certain model components and validate the advantage of joint embedding over text-only embedding. We also visualize attention maps to illustrate the attention mechanism of V+L models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا