Do you want to publish a course? Click here

A new approach for generation of generalized basic probability assignment in the evidence theory

45   0   0.0 ( 0 )
 Added by Dongdong Wu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The process of information fusion needs to deal with a large number of uncertain information with multi-source, heterogeneity, inaccuracy, unreliability, and incompleteness. In practical engineering applications, Dempster-Shafer evidence theory is widely used in multi-source information fusion owing to its effectiveness in data fusion. Information sources have an important impact on multi-source information fusion in an environment of complex, unstable, uncertain, and incomplete characteristics. To address multi-source information fusion problem, this paper considers the situation of uncertain information modeling from the closed world to the open world assumption and studies the generation of basic probability assignment (BPA) with incomplete information. In this paper, a new method is proposed to generate generalized basic probability assignment (GBPA) based on the triangular fuzzy number model under the open world assumption. The proposed method can not only be used in different complex environments simply and flexibly, but also have less information loss in information processing. Finally, a series of comprehensive experiments basing on the UCI data sets are used to verify the rationality and superiority of the proposed method.



rate research

Read More

55 - Yuanpeng He 2021
In real life, lots of information merges from time to time. To appropriately describe the actual situations, lots of theories have been proposed. Among them, Dempster-Shafer evidence theory is a very useful tool in managing uncertain information. To better adapt to complex situations of open world, a generalized evidence theory is designed. However, everything occurs in sequence and owns some underlying relationships with each other. In order to further embody the details of information and better conforms to situations of real world, a Markov model is introduced into the generalized evidence theory which helps extract complete information volume from evidence provided. Besides, some numerical examples is offered to verify the correctness and rationality of the proposed method.
In this paper, we propose in Dezert-Smarandache Theory (DSmT) framework, a new probabilistic transformation, called DSmP, in order to build a subjective probability measure from any basic belief assignment defined on any model of the frame of discernment. Several examples are given to show how the DSmP transformation works and we compare it to main existing transformations proposed in the literature so far. We show the advantages of DSmP over classical transformations in term of Probabilistic Information Content (PIC). The direct extension of this transformation for dealing with qualitative belief assignments is also presented.
The main aim of the present work is to arrive at a mathematical theory close to the historically original conception of generalized functions, i.e. set theoretical functions defined on, and with values in, a suitable ring of scalars and sharing a number of fundamental properties with smooth functions, in particular with respect to composition and nonlinear operations. This is how they are still used in informal calculations in Physics. We introduce a category of generalized functions as smooth set-theoretical maps on (multidimensional) points of a ring of scalars containing infinitesimals and infinities. This category extends Schwartz distributions. The calculus of these generalized functions is closely related to classical analysis, with point values, composition, non-linear operations and the generalization of several classical theorems of calculus. Finally, we extend this category of generalized functions into a Grothendieck topos of sheaves over a concrete site. This topos hence provides a suitable framework for the study of spaces and functions with singularities. In this first paper, we present the basic theory; subsequent ones will be devoted to the resulting theory of ODE and PDE.
We propose a truthful-in-expectation, $(1-1/e)$-approximation mechanism for a strategic variant of the generalized assignment problem (GAP). In GAP, a set of items has to be optimally assigned to a set of bins without exceeding the capacity of any singular bin. In the strategic variant of the problem we study, values for assigning items to bins are the private information of bidders and the mechanism should provide bidders with incentives to truthfully report their values. The approximation ratio of the mechanism is a significant improvement over the approximation ratio of the existing truthful mechanism for GAP. The proposed mechanism comprises a novel convex optimization program as the allocation rule as well as an appropriate payment rule. To implement the convex program in polynomial time, we propose a fractional local search algorithm which approximates the optimal solution within an arbitrarily small error leading to an approximately truthful-in-expectation mechanism. The presented algorithm improves upon the existing optimization algorithms for GAP in terms of simplicity and runtime while the approximation ratio closely matches the best approximation ratio given for GAP when all inputs are publicly known.
Techniques from numerical bifurcation theory are very useful to study transitions between steady fluid flow patterns and the instabilities involved. Here, we provide computational methodology to use parameter continuation in determining probability density functions of systems of stochastic partial differential equations near fixed points, under a small noise approximation. Key innovation is the efficient solution of a generalized Lyapunov equation using an iterative method involving low-rank approximations. We apply and illustrate the capabilities of the method using a problem in physical oceanography, i.e. the occurrence of multiple steady states of the Atlantic Ocean circulation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا