Do you want to publish a course? Click here

Quantum Inspired Word Representation and Computation

59   0   0.0 ( 0 )
 Added by Shen Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Word meaning has different aspects, while the existing word representation compresses these aspects into a single vector, and it needs further analysis to recover the information in different dimensions. Inspired by quantum probability, we represent words as density matrices, which are inherently capable of representing mixed states. The experiment shows that the density matrix representation can effectively capture different aspects of word meaning while maintaining comparable reliability with the vector representation. Furthermore, we propose a novel method to combine the coherent summation and incoherent summation in the computation of both vectors and density matrices. It achieves consistent improvement on word analogy task.



rate research

Read More

A challenging task for word embeddings is to capture the emergent meaning or polarity of a combination of individual words. For example, existing approaches in word embeddings will assign high probabilities to the words Penguin and Fly if they frequently co-occur, but it fails to capture the fact that they occur in an opposite sense - Penguins do not fly. We hypothesize that humans do not associate a single polarity or sentiment to each word. The word contributes to the overall polarity of a combination of words depending upon which other words it is combined with. This is analogous to the behavior of microscopic particles which exist in all possible states at the same time and interfere with each other to give rise to new states depending upon their relative phases. We make use of the Hilbert Space representation of such particles in Quantum Mechanics where we subscribe a relative phase to each word, which is a complex number, and investigate two such quantum inspired models to derive the meaning of a combination of words. The proposed models achieve better performances than state-of-the-art non-quantum models on the binary sentence classification task.
297 - Yuval Pinter 2021
The problem of representing the atomic elements of language in modern neural learning systems is one of the central challenges of the field of natural language processing. I present a survey of the distributional, compositional, and relational approaches to addressing this task, and discuss various means of integrating them into systems, with special emphasis on the word level and the out-of-vocabulary phenomenon.
We discuss an algorithm which produces the meaning of a sentence given meanings of its words, and its resemblance to quantum teleportation. In fact, this protocol was the main source of inspiration for this algorithm which has many applications in the area of Natural Language Processing.
Word representation has always been an important research area in the history of natural language processing (NLP). Understanding such complex text data is imperative, given that it is rich in information and can be used widely across various applications. In this survey, we explore different word representation models and its power of expression, from the classical to modern-day state-of-the-art word representation language models (LMS). We describe a variety of text representation methods, and model designs have blossomed in the context of NLP, including SOTA LMs. These models can transform large volumes of text into effective vector representations capturing the same semantic information. Further, such representations can be utilized by various machine learning (ML) algorithms for a variety of NLP related tasks. In the end, this survey briefly discusses the commonly used ML and DL based classifiers, evaluation metrics and the applications of these word embeddings in different NLP tasks.
Methods for learning word representations using large text corpora have received much attention lately due to their impressive performance in numerous natural language processing (NLP) tasks such as, semantic similarity measurement, and word analogy detection. Despite their success, these data-driven word representation learning methods do not consider the rich semantic relational structure between words in a co-occurring context. On the other hand, already much manual effort has gone into the construction of semantic lexicons such as the WordNet that represent the meanings of words by defining the various relationships that exist among the words in a language. We consider the question, can we improve the word representations learnt using a corpora by integrating the knowledge from semantic lexicons?. For this purpose, we propose a joint word representation learning method that simultaneously predicts the co-occurrences of two words in a sentence subject to the relational constrains given by the semantic lexicon. We use relations that exist between words in the lexicon to regularize the word representations learnt from the corpus. Our proposed method statistically significantly outperforms previously proposed methods for incorporating semantic lexicons into word representations on several benchmark datasets for semantic similarity and word analogy.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا