Do you want to publish a course? Click here

Pentacene and Tetracene Molecules and Films on H/Si(111): Level Alignment from Hybrid Density Functional Theory

41   0   0.0 ( 0 )
 Added by Svenja Janke
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electronic properties of hybrid organic-inorganic semiconductor interfaces depend strongly on the alignment of the electronic carrier levels in the organic/inorganic components. In the present work, we address this energy level alignment from first principles theory for two paradigmatic organic-inorganic semiconductor interfaces, the singlet fission materials tetracene and pentacene on H/Si(111), using all-electron hybrid density functional theory. For isolated tetracene on H/Si(111), a type I-like heterojunction (lowest-energy electron and hole states on Si) is found. For isolated pentacene, the molecular and semiconductor valence band edges are degenerate. For monolayer films, we show how to construct supercell geometries with up to 1,192 atoms, which minimize the strain between the inorganic surface and an organic monolayer film. Based on these models, we predict the formation of type II heterojunctions (electron states on Si, hole-like states on the organic species) for both acenes, indicating that charge separation at the interface between the organic and inorganic components is favored. The paper discusses the steps needed to find appropriate low-energy interface geometries for weakly bonded organic molecules and films on inorganic substrates from first principles, a necessary prerequisite for any computational level alignment prediction.

rate research

Read More

We investigate the molecular acceptors 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA), 2,3,5,6-tetra uoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), and 4,5,9,10-pyrenetetraone (PYTON) on Ag(111) using densityfunctional theory. For two groups of the HSE(alpha, omega) family of exchange-correlation functionals (omega = 0 and omega = 0.2AA) we study the isolated components as well as the combined systems as a function of the amount of exact-exchange (alpha). We find that hybrid functionals favour electron transfer to the adsorbate. Comparing to experimental work-function data, we report for (alpha) ca. 0.25 a notable but small improvement over (semi)local functionals for the interface dipole. Although Kohn-Sham eigenvalues are only approximate representations of ionization energies, incidentally, at this value also the density of states agrees well with the photoelectron spectra. However, increasing (alpha) to values for which the energy of the lowest unoccupied molecular orbital matches the experimental electron affinity in the gas phase worsens both the interface dipole and the density of states. Our results imply that semi-local DFT calculations may often be adequate for conjugated organic molecules on metal surfaces and that the much more computationally demanding hybrid functionals yield only small improvements.
123 - Handong Li , Lei Gao , Hui Li 2012
The van der Waals epitaxy of single crystalline Bi2Se3 film was achieved on hydrogen passivated Si(111) (H:Si) substrate by physical vapor deposition. Valence band structures of Bi2Se3/H:Si heterojunction were investigated by X-ray Photoemission Spectroscopy and Ultraviolet Photoemission Spectroscopy. The measured Schottky barrier height at the Bi2Se3-H:Si interface was 0.31 eV. The findings pave the way for economically preparing heterojunctions and multilayers of layered compound families of topological insulators.
The Pb/Si(111) thin films were simulated within the density functional theory (DFT). The well-known Perdew-Burke-Ernzerhof (PBE) version of the generalized gradient approximation (GGA) and its recent nonempirical successor Wu-Cohen (WC) issue were used to estimate the exchange-correlation functional. Lattice parameters were calculated for Bulk of the Pb and Si compounds to obtain more reliable lattice mismatch at the interface to be consistent with our used full-potential method of calculations. The WC-GGA result predicts the lattice constants of the Pb and Si compounds better than the GGA when compared with experiment. We have found that the spin-orbit coupling (SOC) does not significantly influence the results. Our finding is in agreement with the recent observation of the Rashba-type spin-orbit splitting of quantum well states in ultrathin Pb/Si(111) films. Our result shows, in agreement with experiment, that the top site (T1) is the most stable phase. A combination of tight $sigma$ and feeble $pi$ bonds has been found at the interface, which results in a covalent Pb-Si bond. Our calculated electric field gradient (EFG) predicts quantum size effects (QSE) with respect to the number of deposited Pb layers on the Si substrate. The QSE prediction shows that the EFG dramatically drops on going from first to second layer. The EFG calculation shows that this system is not an ideal paradigm to freestanding films.
We report experimental and theoretical evidence for the formation of chiral bobbers - an interfacial topological spin texture - in FeGe films grown by molecular beam epitaxy (MBE). After establishing the presence of skyrmions in FeGe/Si(111) thin film samples through Lorentz transmission electron microscopy and topological Hall effect, we perform magnetization measurements that reveal an inverse relationship between film thickness and the slope of the susceptibility (dc{hi}/dH). We present evidence for the evolution as a function of film thickness, L, from a skyrmion phase for L < LD/2 to a cone phase with chiral bobbers at the interface for L > LD/2, where LD ~ 70 nm is the FeGe pitch length. We show using micromagnetic simulations that chiral bobbers, earlier predicted to be metastable, are in fact the stable ground state in the presence of an additional interfacial Rashba Dzyaloshinskii-Moriya interaction (DMI).
We derive first- and second-order piezoelectric coefficients for the zinc-blende III-V semiconductors, {Al,Ga,In}-{N,P,As,Sb}. The results are obtained within the Heyd-Scuseria-Ernzerhof hybrid-functional approach in the framework of density functional theory and the Berry-phase theory of electric polarization. To achieve a meaningful interpretation of the results, we build an intuitive phenomenological model based on the description of internal strain and the dynamics of the electronic charge centers. We discuss in detail first- and second-order internal strain effects, together with strain-induced changes in ionicity. This analysis reveals that the relatively large importance in the III-Vs of non-linear piezoelectric effects compared to the linear ones arises because of a delicate balance between the ionic polarization contribution due to internal strain relaxation effects, and the contribution due to the electronic charge redistribution induced by macroscopic and internal strain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا