Do you want to publish a course? Click here

New molecular species at redshift z=0.89

72   0   0.0 ( 0 )
 Added by Belen Tercero
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first detections of CH3SH, C3H+, C3N, HCOOH, CH2CHCN, and H2CN in an extragalactic source. Namely the spiral arm of a galaxy located at z=0.89 on the line of sight to the radio-loud quasar PKS 1830-211. OCS, SO2, and NH2CN were also detected, raising the total number of molecular species identified in that early time galaxy to 54, not counting isotopologues. The detections were made in absorption against the SW quasar image, at 2 kpc from the galaxy centre, over the course of a Q band spectral line survey made with the Yebes 40 m telescope (rest-frame frequencies: 58.7-93.5 GHz). We derived the rotational temperatures and column densities of those species, which are found to be subthermally excited. The molecular abundances, and in particular the large abundances of C3H+ and of several previously reported cations, are characteristic of diffuse or translucent clouds with enhanced UV radiation or strong shocks.



rate research

Read More

A 12 year-long monitoring of the absorption caused by a z=0.89 spiral galaxy on the line of sight to the radio-loud gravitationally lensed quasar PKS 1830-211 reveals spectacular changes in the HCO+ and HCN (2-1) line profiles. The depth of the absorption toward the quasar NE image increased by a factor of ~3 in 1998-1999 and subsequently decreased by a factor >=6 between 2003 and 2006. These changes were echoed by similar variations in the absorption line wings toward the SW image. Most likely, these variations result from a motion of the quasar images with respect to the foreground galaxy, which could be due to a sporadic ejection of bright plasmons by the background quasar. VLBA observations have shown that the separation between the NE and SW images changed in 1997 by as much as 0.2 mas within a few months. Assuming that motions of similar amplitude occurred in 1999 and 2003, we argue that the clouds responsible for the NE absorption and the broad wings of the SW absorption should be sparse and have characteristic sizes of 0.5-1 pc.
We perform simulations of the capabilities of the next generation Very Large Array in the context of imaging low order CO emission from typical high redshift star forming galaxies at ~ 1 kpc resolution. We adopt as a spatial and dynamical template the CO 1-0 emission from M 51, scaled accordingly for redshift, transition, and total gas mass. The molecular gas masses investigated are factors of 1.4, 3.5, and 12.5 larger that of M 51, at z = 0.5, 2, and 4.2, respectively. The z = 2 galaxy gas mass is comparable to the lowest mass galaxies currently being discovered in the deepest ALMA and NOEMA cosmological CO line surveys, corresponding to galaxies with star formation rates ~ 10 to 100 $M_odot$ yr$^{-1}$. The ngVLA will perform quality imaging at 1kpc resolution of the gas distribution and dynamics over this disk. We recover the overall rotation curve, galaxy orientation properties, and molecular ISM internal velocity dispersion. The model at z = 4.2 corresponds to a massive star forming main sequence disk (SFR ~ 130 $M_odot$ yr$^{-1}$). The ngVLA can obtain 1kpc resolution images of such a system in a reasonable integration time, and recover the basic galaxy orientation parameters, and, asymptotically, the maximum rotation velocity. We compare the ngVLA results with capabilities of ALMA and the Jansky VLA. ALMA and the VLA can detect the integrated low order CO emission from these galaxies, but lack the sensitivity to perform the high resolution imaging to recover the dynamics at 1kpc scales. To do so would require of order 1000 hrs per galaxy with these current facilities. We investigate a minimal ngVLA configuration, removing the longest baselines and much of the very compact core, and find good imaging can still be performed at 1 kpc resolution.
116 - F. Combes , N. Gupta , S. Muller 2021
The Large Survey Project (LSP) MeerKAT Absorption Line Survey (MALS) is a blind HI 21-cm and OH 18-cm absorption line survey in the L- and UHF-bands, with the primary goal to better determine the occurrence of atomic and molecular gas in the circum-galactic and inter-galactic medium, and its redshift evolution. Here we present the first results using the UHF-band, obtained towards the strongly lensed radio source PKS1830, detecting absorption in the lens galaxy. With merely 90min of data acquired on-source for science verification and processed using the Automated Radio Telescope Imaging Pipeline (ARTIP), we detect in absorption the known HI 21-cm and OH 18-cm main lines at z=0.89 at an unprecedented signal-to-noise ratio (4000 in the continuum, with 6km/s channels). For the first time we report the detection at z=0.89 of OH satellite lines, so far not detected at z $>$ 0.25. We decompose the OH lines into a thermal and a stimulated contribution, where the 1612 and 1720MHz lines are conjugate. The total OH 1720MHz emission line luminosity is 6100Lsun. This is the most luminous known 1720MHz maser line. The absorption components of the different images of the background source sample different light paths in the lensing galaxy, and their weights in the total absorption spectrum are expected to vary in time, on daily and monthly time scales. We compare our normalized spectra with those obtained more than 20 yrs ago, and find no variation. We interpret the absorption spectra with the help of a lens galaxy model, derived from an N-body hydro-dynamical simulation, with a morphology similar to its optical HST image. It is possible to reproduce the observations without invoking any central gas outflows. There are, however, distinct and faint high-velocity features, most likely high-velocity clouds. These clouds may contribute to broaden the HI and OH spectra.
We present a new study of archival ALMA observations of the CO(2-1) line emission of the host galaxy of quasar RX J1131 at redshift $z$=0.654, lensed by a foreground galaxy. A simple lens model is shown to well reproduce the optical images obtained by the Hubble Space Telescope. Clear evidence for rotation of the gas contained in the galaxy is obtained and a simple rotating disc model is shown to give an excellent overall description of the morpho-kinematics of the source. The possible presence of a companion galaxy suggested by some previous authors is not confirmed. Detailed comparison between model and observations gives evidence for a more complex dynamics than implied by the model. Doppler velocity dispersion within the beam size in the image plane is found to account for the observed line width.
173 - S. Muller , M. Guelin (2 2014
We report the first extragalactic detection of chloronium (H2Cl+), in the z=0.89 absorber in front of the lensed blazar PKS1830-211. The ion is detected through its 1_11-0_00 line along two independent lines of sight toward the North-East and South-West images of the blazar. The relative abundance of H2Cl+ is significantly higher (by a factor ~7) in the NE line of sight, which has a lower H2/H fraction, indicating that H2Cl+ preferably traces the diffuse gas component. From the ratio of the H2^35Cl+ and H2^37Cl+ absorptions toward the SW image, we measure a 35Cl/37Cl isotopic ratio of 3.1 (-0.2; +0.3) at z=0.89, similar to that observed in the Galaxy and the solar system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا