Do you want to publish a course? Click here

Tunable giant magnetoresistance in a single-molecule junction

71   0   0.0 ( 0 )
 Added by Kai Yang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Controlling electronic transport through a single-molecule junction is crucial for molecular electronics or spintronics. In magnetic molecular devices, the spin degree-of-freedom can be used to this end since the magnetic properties of the magnetic ion centers fundamentally impact the transport through the molecules. Here we demonstrate that the electron pathway in a single-molecule device can be selected between two molecular orbitals by varying a magnetic field, giving rise to a tunable anisotropic magnetoresistance up to 93%. The unique tunability of the electron pathways is due to the magnetic reorientation of the transition metal center, resulting in a re-hybridization of molecular orbitals. We obtain the tunneling electron pathways by Kondo effect, which manifests either as a peak or a dip line shape. The energy changes of these spin-reorientations are remarkably low and less than one millielectronvolt. The large tunable anisotropic magnetoresistance could be used to control electronic transport in molecular spintronics.

rate research

Read More

It is known that the quantum-mechanical ground state of a nano-scale junction has a significant impact on its electrical transport properties. This becomes particularly important in transistors consisting of a single molecule. Due to strong electron-electron interactions and the possibility to access ground states with high spins, these systems are eligible hosts of a current-blockade phenomenon called ground-state spin blockade. This effect arises from the inability of a charge carrier to account for the spin difference required to enter the junction, as that process would violate the spin selection rules. Here, we present a direct experimental demonstration of ground-state spin blockade in a high-spin single-molecule transistor. The measured transport characteristics of this device exhibit a complete suppression of resonant transport due to a ground-state spin difference of 3/2 between subsequent charge states. Strikingly, the blockade can be reversibly lifted by driving the system through a magnetic ground-state transition in one charge state, using the tunability offered by both magnetic and electric fields.
Single molecules are nanoscale thermodynamic systems with few degrees of freedom. Thus, the knowledge of their entropy can reveal the presence of microscopic electron transfer dynamics, that are difficult to observe otherwise. Here, we apply thermocurrent spectroscopy to directly measure the entropy of a single free radical molecule in a magnetic field. Our results allow us to uncover the presence of a singlet to triplet transition in one of the redox states of the molecule, not detected by conventional charge transport measurements. This highlights the power of thermoelectric measurements which can be used to determine the difference in configurational entropy between the redox states of a nanoscale system involved in conductance without any prior assumptions about its structure or microscopic dynamics.
We theoretically investigate quantum transport through single-molecule magnet (SMM) junctions with ferromagnetic and normal-metal leads in the sequential regime. The current obtained by means of the rate-equation gives rise to the tunneling anisotropic magnetoresistance (TAMR), which varies with the angle between the magnetization direction of ferromagnetic lead and the easy axis of SMM. The angular dependence of TAMR can serve as a probe to determine experimentally the easy axis of SMM. Moreover, it is demonstrated that both the magnitude and sign of TAMR are tunable by the bias voltage, suggesting a promising TAMR based spintronic molecule-device.
Single-molecule break junction measurements deliver a huge number of conductance vs. electrode separation traces. Along such measurements the target molecules may bind to the electrodes in different geometries, and the evolution and rupture of the single-molecule junction may also follow distinct trajectories. The unraveling of the various typical trace classes is a prerequisite of the proper physical interpretation of the data. Here we exploit the efficient feature recognition properties of neural networks to automatically find the relevant trace classes. To eliminate the need for manually labeled training data we apply a combined method, which automatically selects training traces according to the extreme values of principal component projections or some auxiliary measured quantities, and then the network captures the features of these characteristic traces, and generalizes its inference to the entire dataset. The use of a simple neural network structure also enables a direct insight to the decision making mechanism. We demonstrate that this combined machine learning method is efficient in the unsupervised recognition of unobvious, but highly relevant trace classes within low and room temperature gold-4,4 bipyridine-gold single molecule break junction data.
We investigate theoretically the effects of intrinsic spin-relaxation on the spin-dependent transport through a single-molecule magnet (SMM), which is weakly coupled to ferromagnetic leads. The tunnel magnetoresistance (TMR) is obtained by means of the rate-equation approach including not only the sequential but also the cotunneling processes. It is shown that the TMR is strongly suppressed by the fast spin-relaxation in the sequential region and can vary from a large positive to slight negative value in the cotunneling region. Moreover, with an external magnetic field along the easy-axis of SMM, a large negative TMR is found when the relaxation strength increases. Finally, in the high bias voltage limit the TMR for the negative bias is slightly larger than its characteristic value of the sequential region, however it can become negative for the positive bias caused by the fast spin-relaxation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا