Yield ratio of hypertriton to light nuclei in heavy-ion collisions from $rm sqrt{s_{NN}}$ = 4.9 GeV to 2.76 TeV


Abstract in English

We resolve the difference in the yield ratio $rm S_3$ = $rm frac{N_{^3_{Lambda}H}/N_Lambda}{N_{^3He}/N_p}$ measured in Au+Au collisions at $rm sqrt{s_{NN}}$ = 200 GeV and in Pb-Pb collisions at $rm sqrt{s_{NN}}$ = 2.76 TeV by adopting a different treatment of the weak decay contribution to the proton yield in Au+Au collisions at $rm sqrt{s_{NN}}$ = 200 GeV. We then use the coalescence model to extract information on the $Lambda$ and nucleon density fluctuations at the kinetic freeze-out of heavy ion collisions. We also show from available experimental data that the yield ratio $rm S_2$ = $rm frac{N_{^3_{Lambda}H}}{N_Lambda N_ d}$ is a more promising observable than $rm S_3$ for probing the local baryon-strangeness correlation in the produced medium.

Download