Do you want to publish a course? Click here

EfficientPS: Efficient Panoptic Segmentation

87   0   0.0 ( 0 )
 Added by Abhinav Valada
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Understanding the scene in which an autonomous robot operates is critical for its competent functioning. Such scene comprehension necessitates recognizing instances of traffic participants along with general scene semantics which can be effectively addressed by the panoptic segmentation task. In this paper, we introduce the Efficient Panoptic Segmentation (EfficientPS) architecture that consists of a shared backbone which efficiently encodes and fuses semantically rich multi-scale features. We incorporate a new semantic head that aggregates fine and contextual features coherently and a new variant of Mask R-CNN as the instance head. We also propose a novel panoptic fusion module that congruously integrates the output logits from both the heads of our EfficientPS architecture to yield the final panoptic segmentation output. Additionally, we introduce the KITTI panoptic segmentation dataset that contains panoptic annotations for the popularly challenging KITTI benchmark. Extensive evaluations on Cityscapes, KITTI, Mapillary Vistas and Indian Driving Dataset demonstrate that our proposed architecture consistently sets the new state-of-the-art on all these four benchmarks while being the most efficient and fast panoptic segmentation architecture to date.



rate research

Read More

Panoptic segmentation of point clouds is a crucial task that enables autonomous vehicles to comprehend their vicinity using their highly accurate and reliable LiDAR sensors. Existing top-down approaches tackle this problem by either combining independent task-specific networks or translating methods from the image domain ignoring the intricacies of LiDAR data and thus often resulting in sub-optimal performance. In this paper, we present the novel top-down Efficient LiDAR Panoptic Segmentation (EfficientLPS) architecture that addresses multiple challenges in segmenting LiDAR point clouds including distance-dependent sparsity, severe occlusions, large scale-variations, and re-projection errors. EfficientLPS comprises of a novel shared backbone that encodes with strengthened geometric transformation modeling capacity and aggregates semantically rich range-aware multi-scale features. It incorporates new scale-invariant semantic and instance segmentation heads along with the panoptic fusion module which is supervised by our proposed panoptic periphery loss function. Additionally, we formulate a regularized pseudo labeling framework to further improve the performance of EfficientLPS by training on unlabelled data. We benchmark our proposed model on two large-scale LiDAR datasets: nuScenes, for which we also provide ground truth annotations, and SemanticKITTI. Notably, EfficientLPS sets the new state-of-the-art on both these datasets.
Panoptic segmentation has recently unified semantic and instance segmentation, previously addressed separately, thus taking a step further towards creating more comprehensive and efficient perception systems. In this paper, we present Panoster, a novel proposal-free panoptic segmentation method for LiDAR point clouds. Unlike previous approaches relying on several steps to group pixels or points into objects, Panoster proposes a simplified framework incorporating a learning-based clustering solution to identify instances. At inference time, this acts as a class-agnostic segmentation, allowing Panoster to be fast, while outperforming prior methods in terms of accuracy. Without any post-processing, Panoster reached state-of-the-art results among published approaches on the challenging SemanticKITTI benchmark, and further increased its lead by exploiting heuristic techniques. Additionally, we showcase how our method can be flexibly and effectively applied on diverse existing semantic architectures to deliver panoptic predictions.
In this technical report, we present key details of our winning panoptic segmentation architecture EffPS_b1bs4_RVC. Our network is a lightweight version of our state-of-the-art EfficientPS architecture that consists of our proposed shared backbone with a modified EfficientNet-B5 model as the encoder, followed by the 2-way FPN to learn semantically rich multi-scale features. It consists of two task-specific heads, a modified Mask R-CNN instance head and our novel semantic segmentation head that processes features of different scales with specialized modules for coherent feature refinement. Finally, our proposed panoptic fusion module adaptively fuses logits from each of the heads to yield the panoptic segmentation output. The Robust Vision Challenge 2020 benchmarking results show that our model is ranked #1 on Microsoft COCO, VIPER and WildDash, and is ranked #2 on Cityscapes and Mapillary Vistas, thereby achieving the overall rank #1 for the panoptic segmentation task.
Panoptic segmentation is posed as a new popular test-bed for the state-of-the-art holistic scene understanding methods with the requirement of simultaneously segmenting both foreground things and background stuff. The state-of-the-art panoptic segmentation network exhibits high structural complexity in different network components, i.e. backbone, proposal-based foreground branch, segmentation-based background branch, and feature fusion module across branches, which heavily relies on expert knowledge and tedious trials. In this work, we propose an efficient, cooperative and highly automated framework to simultaneously search for all main components including backbone, segmentation branches, and feature fusion module in a unified panoptic segmentation pipeline based on the prevailing one-shot Network Architecture Search (NAS) paradigm. Notably, we extend the common single-task NAS into the multi-component scenario by taking the advantage of the newly proposed intra-modular search space and problem-oriented inter-modular search space, which helps us to obtain an optimal network architecture that not only performs well in both instance segmentation and semantic segmentation tasks but also be aware of the reciprocal relations between foreground things and background stuff classes. To relieve the vast computation burden incurred by applying NAS to complicated network architectures, we present a novel path-priority greedy search policy to find a robust, transferrable architecture with significantly reduced searching overhead. Our searched architecture, namely Auto-Panoptic, achieves the new state-of-the-art on the challenging COCO and ADE20K benchmarks. Moreover, extensive experiments are conducted to demonstrate the effectiveness of path-priority policy and transferability of Auto-Panoptic across different datasets. Codes and models are available at: https://github.com/Jacobew/AutoPanoptic.
Comprehensive understanding of dynamic scenes is a critical prerequisite for intelligent robots to autonomously operate in their environment. Research in this domain, which encompasses diverse perception problems, has primarily been focused on addressing specific tasks individually rather than modeling the ability to understand dynamic scenes holistically. In this paper, we introduce a novel perception task denoted as multi-object panoptic tracking (MOPT), which unifies the conventionally disjoint tasks of semantic segmentation, instance segmentation, and multi-object tracking. MOPT allows for exploiting pixel-level semantic information of thing and stuff classes, temporal coherence, and pixel-level associations over time, for the mutual benefit of each of the individual sub-problems. To facilitate quantitative evaluations of MOPT in a unified manner, we propose the soft panoptic tracking quality (sPTQ) metric. As a first step towards addressing this task, we propose the novel PanopticTrackNet architecture that builds upon the state-of-the-art top-down panoptic segmentation network EfficientPS by adding a new tracking head to simultaneously learn all sub-tasks in an end-to-end manner. Additionally, we present several strong baselines that combine predictions from state-of-the-art panoptic segmentation and multi-object tracking models for comparison. We present extensive quantitative and qualitative evaluations of both vision-based and LiDAR-based MOPT that demonstrate encouraging results.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا