Do you want to publish a course? Click here

Analysis of the evolution of the Sars-Cov-2 in Italy, the role of the asymptomatics and the success of Logistic model

60   0   0.0 ( 0 )
 Added by Gianluca Martelloni
 Publication date 2020
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

In this letter we study the temporal evolution of the Sars-Cov-2 in Italy. The time window of the real data is between February 24 and March 25. After we upgrade the data until April 1.We perform the analysis with 4 different model and we think that the best candidate to describe correctly the italian situation is a generalized Logistic equation. We use two coupled differential equations that describe the evolution of the severe infected and the deaths. We have done this choice, because in Italy the pharyngeal swabs are made only to severe infected and so we have no information about asymptomatic people. An important observation is that the virus spreads between Regions with some delay; so we suggest that a different analysis region by region would be more sensible than that on the whole Italy. In particular the region Lombardia has a behaviour very fast with respect to the other ones. We show the behaviour of the total deaths and the total severe infected for Italy and five regions: Lombardia, Emilia Romagna, Veneto, Piemonte, Toscana. Finally we do an analysis of the peak and an estimation of how many lifes have been saved with the LockDown.



rate research

Read More

In a previous article [1] we have described the temporal evolution of the Sars- Cov-2 in Italy in the time window February 24-April 1. As we can see in [1] a generalized logistic equation captures both the peaks of the total infected and the deaths. In this article our goal is to study the missing peak, i.e. the currently infected one (or total currently positive). After the April 7 the large increase in the number of swabs meant that the logistical behavior of the infected curve no longer worked. So we decided to generalize the model, introducing new parameters. Moreover, we adopt a similar approach used in [1] (for the estimation of deaths) in order to evaluate the recoveries. In this way, introducing a simple conservation law, we define a model with 4 populations: total infected, currently positives, recoveries and deaths. Therefore, we propose an alternative method to a classical SIRD model for the evaluation of the Sars-Cov-2 epidemic. However, the method is general and thus applicable to other diseases. Finally we study the behavior of the ratio infected over swabs for Italy, Germany and USA, and we show as studying this parameter we recover the generalized Logistic model used in [1] for these three countries. We think that this trend could be useful for a future epidemic of this coronavirus.
A number of epidemics, including the SARS-CoV-1 epidemic of 2002-2004, have been known to exhibit superspreading, in which a small fraction of infected individuals is responsible for the majority of new infections. The existence of superspreading implies a fat-tailed distribution of infectiousness (new secondary infections caused per day) among different individuals. Here, we present a simple method to estimate the variation in infectiousness by examining the variation in early-time growth rates of new cases among different subpopulations. We use this method to estimate the mean and variance in the infectiousness, $beta$, for SARS-CoV-2 transmission during the early stages of the pandemic within the United States. We find that $sigma_beta/mu_beta gtrsim 3.2$, where $mu_beta$ is the mean infectiousness and $sigma_beta$ its standard deviation, which implies pervasive superspreading. This result allows us to estimate that in the early stages of the pandemic in the USA, over 81% of new cases were a result of the top 10% of most infectious individuals.
104 - Christian S. Perone 2020
This article contains a series of analyses done for the SARS-CoV-2 outbreak in Rio Grande do Sul (RS) in the south of Brazil. These analyses are focused on the high-incidence cities such as the state capital Porto Alegre and at the state level. We provide methodological details and estimates for the effective reproduction number $R_t$, a joint analysis of the mobility data together with the estimated $R_t$ as well as ICU simulations and ICU LoS (length of stay) estimation for hospitalizations in Porto Alegre/RS.
SARS-CoV-2 causing COVID-19 disease has moved rapidly around the globe, infecting millions and killing hundreds of thousands. The basic reproduction number, which has been widely used and misused to characterize the transmissibility of the virus, hides the fact that transmission is stochastic, is dominated by a small number of individuals, and is driven by super-spreading events (SSEs). The distinct transmission features, such as high stochasticity under low prevalence, and the central role played by SSEs on transmission dynamics, should not be overlooked. Many explosive SSEs have occurred in indoor settings stoking the pandemic and shaping its spread, such as long-term care facilities, prisons, meat-packing plants, fish factories, cruise ships, family gatherings, parties and night clubs. These SSEs demonstrate the urgent need to understand routes of transmission, while posing an opportunity that outbreak can be effectively contained with targeted interventions to eliminate SSEs. Here, we describe the potential types of SSEs, how they influence transmission, and give recommendations for control of SARS-CoV-2.
As of July 2021, there is a continuing outbreak of the B.1.617.2 (Delta) variant of SARS-CoV-2 in Sydney, Australia. The outbreak is of major concern as the Delta variant is estimated to have twice the reproductive number to previous variants that circulated in Australia in 2020, which is worsened by low levels of acquired immunity in the population. Using a re-calibrated agent-based model, we explored a feasible range of non-pharmaceutical interventions, in terms of both mitigation (case isolation, home quarantine) and suppression (school closures, social distancing). Our nowcasting modelling indicated that the level of social distancing currently attained in Sydney is inadequate for the outbreak control. A counter-factual analysis suggested that if 80% of agents comply with social distancing, then at least a month is needed for the new daily cases to reduce from their peak to below ten. A small reduction in social distancing compliance to 70% lengthens this period to 45 days.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا