Do you want to publish a course? Click here

Hydrodynamics, superfluidity and giant number fluctuations in a model of self-propelled particles

216   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive hydrodynamics of a prototypical one dimensional model, having variable-range hopping, which mimics passive diffusion and ballistic motion of active, or self-propelled, particles. The model has two main ingredients - the hardcore interaction and the competing mechanisms of short and long range hopping. We calculate two density-dependent transport coefficients - the bulk-diffusion coefficient and the conductivity, the ratio of which, despite violation of detailed balance, is connected to number fluctuation by an Einstein relation. In the limit of infinite range hopping, the model exhibits, upon tuning density $rho$ (or activity), a superfluid transition from a finitely conducting state to an infinitely conducting one, characterized by a divergence in conductivity $chi(rho) sim (rho-rho_c)^{-1}$ with $rho_c$ being the critical density. The diverging conductivity greatly increases particle (or vacancy) mobility and induces giant number fluctuations in the system.



rate research

Read More

We study the large deviations of the distribution P(W_tau) of the work associated with the propulsion of individual active brownian particles in a time interval tau, in the region of the phase diagram where macroscopic phase separation takes place. P(W_tau) is characterised by two peaks, associated to particles in the gaseous and in the clusterised phases, and two separate non-convex branches. Accordingly, the generating function of W_tau cumulants displays a double singularity. We discuss the origin of such non-convex branches in terms of the peculiar dynamics of the system phases, and the relation between the observation time tau and the typical persistence times of the particles in the two phases.
Run-and-tumble dynamics is a wide-spread mechanism of swimming bacteria. The accumulation of run-and-tumble microswimmers near impermeable surfaces is studied theoretically and numerically in the low-density limit in two and three spatial dimensions. Both uni-modal and exponential distributions of the run lengths are considered. Constant run lengths lead to {peaks and depletions regions} in the density distribution of particles near the surface, in contrast to {exponentially-distributed run lengths}. Finally, we present a universal accumulation law for large channel widths, which applies not only to run-and-tumble swimmers, but also to many other kinds of self-propelled particles.
We study the behaviour of interacting self-propelled particles, whose self-propulsion speed decreases with their local density. By combining direct simulations of the microscopic model with an analysis of the hydrodynamic equations obtained by explicitly coarse graining the model, we show that interactions lead generically to the formation of a host of patterns, including moving clumps, active lanes and asters. This general mechanism could explain many of the patterns seen in recent experiments and simulations.
We study coarse-grained density fluctuations in the disordered phase of the paradigmatic Vicsek-like models of self-propelled particles with alignment interactions and random self-propulsion velocities. By numerically integrating a fluctuation-response relation - the direct consequence of an additivity property, we compute logarithm of the large-deviation probabilities of the coarse-grained subsystem density, while the system is in the disordered fluid phase with vanishing macroscopic velocity. The large-deviation probabilities, computed within additivity, agree remarkably well with that obtained from direct microscopic simulations of the models. Our results provide an evidence of the existence of an equilibrium-like chemical potential, which governs the coarse-grained density fluctuations in the Vicsek-like models. Moreover, comparison of the particle-number fluctuations among several self-propelled particle systems suggests a common mechanism through which the number fluctuations arise in such systems.
Active diffusiophoresis - swimming through interaction with a self-generated, neutral, solute gradient - is a paradigm for autonomous motion at the micrometer scale. We study this propulsion mechanism within a linear response theory. Firstly, we consider several aspects relating to the dynamics of the swimming particle. We extend established analytical formulae to describe small swimmers, which interact with their environment on a finite lengthscale. Solute convection is also taken into account. Modeling of the chemical reaction reveals a coupling between the angular distribution of reactivity on the swimmer and the concentration field. This effect, which we term reaction induced concentration distortion, strongly influences the particle speed. Building on these insights, we employ irreversible, linear thermodynamics to formulate an energy balance. This approach highlights the importance of solute convection for a consistent treatment of the energetics. The efficiency of swimming is calculated numerically and approximated analytically. Finally, we define an efficiency of transport for swimmers which are moving in random directions. It is shown that this efficiency scales as the inverse of the macroscopic distance over which transport is to occur.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا