No Arabic abstract
To investigate inelastic electron scattering, which is ubiquitous in various fields of study, we carry out ab initio study of the real-time dynamics of a one-dimensional electron wave packet scattered by a hydrogen atom using different methods: the exact solution, the solution provided by time-dependent density functional theory (TDDFT), and the solutions given by alternative approaches. This research not only sheds light on inelastic scattering processes but also verifies the capability of TDDFT in describing inelastic electron scattering. We revisit the adiabatic local-density approximation (ALDA) in describing the excitation of the target during the scattering process along with a self-interaction correction and spin-polarized calculations. Our results reveal that the ALDA severely underestimates the energy transferred in the regime of low incident energy particularly for a spin-singlet system. After demonstrating alternative approaches, we propose a hybrid ab initio method to deal with the kinetic correlation alongside TDDFT. This hybrid method would facilitate first-principles studies of systems in which the correlation of a few electrons among many others is of interest.
Reliable quantum chemical methods for the description of molecules with dense-lying frontier orbitals are needed in the context of many chemical compounds and reactions. Here, we review developments that led to our newcomputational toolbo x which implements the quantum chemical density matrix renormalization group in a second-generation algorithm. We present an overview of the different components of this toolbox.
We present a time-dependent density-functional method able to describe the photoelectron spectrum of atoms and molecules when excited by laser pulses. This computationally feasible scheme is based on a geometrical partitioning that efficiently gives access to photoelectron spectroscopy in time-dependent density-functional calculations. By using a geometrical approach, we provide a simple description of momentum-resolved photoe- mission including multi-photon effects. The approach is validated by comparison with results in the literature and exact calculations. Furthermore, we present numerical photoelectron angular distributions for randomly oriented nitrogen molecules in a short near infrared intense laser pulse and helium-(I) angular spectra for aligned carbon monoxide and benzene.
Nuclear structure models built from phenomenological mean fields, the effective nucleon-nucleon interactions (or Lagrangians), and the realistic bare nucleon-nucleon interactions are reviewed. The success of covariant density functional theory (CDFT) to describe nuclear properties and its influence on Brueckner theory within the relativistic framework are focused upon. The challenges and ambiguities of predictions for unstable nuclei without data or for high-density nuclear matter, arising from relativistic density functionals, are discussed. The basic ideas in building an ab initio relativistic density functional for nuclear structure from ab initio calculations with realistic nucleon-nucleon interactions for both nuclear matter and finite nuclei are presented. The current status of fully self-consistent relativistic Brueckner-Hartree-Fock (RBHF) calculations for finite nuclei or neutron drops (ideal systems composed of a finite number of neutrons and confined within an external field) is reviewed. The guidance and perspectives towards an ab initio covariant density functional theory for nuclear structure derived from the RBHF results are provided.
Density functional theory is generalized to incorporate electron-phonon coupling. A Kohn-Sham equation yielding the electronic density $n_U(mathbf{r})$, a conditional probability density depending parametrically on the phonon normal mode amplitudes $U={U_{mathbf{q}lambda}}$, is coupled to the nuclear Schrodinger equation of the exact factorization method. The phonon modes are defined from the harmonic expansion of the nuclear Schrodinger equation. A nonzero Berry curvature on nuclear configuration space affects the phonon modes, showing that the potential energy surface alone is generally not sufficient to define the phonons. An orbital-dependent functional approximation for the non-adiabatic exchange-correlation energy reproduces the leading-order nonadiabatic electron-phonon-induced band structure renormalization in the Frohlich model.
We present SPARC: Simulation Package for Ab-initio Real-space Calculations. SPARC can perform Kohn-Sham density functional theory calculations for isolated systems such as molecules as well as extended systems such as crystals and surfaces, in both static and dynamic settings. It is straightforward to install/use and highly competitive with state-of-the-art planewave codes, demonstrating comparable performance on a small number of processors and increasing advantages as the number of processors grows. Notably, SPARC brings solution times down to a few seconds for systems with $mathcal{O}(100-500)$ atoms on large-scale parallel computers, outperforming planewave counterparts by an order of magnitude and more.