Do you want to publish a course? Click here

Elliptic equations with VMO a, b$,in L_{d}$, and c$,in L_{d/2}$

238   0   0.0 ( 0 )
 Added by Nicolai Krylov
 Publication date 2020
  fields
and research's language is English
 Authors N.V. Krylov




Ask ChatGPT about the research

We consider elliptic equations with operators $L=a^{ij}D_{ij}+b^{i}D_{i}-c$ with $a$ being almost in VMO, $bin L_{d}$ and $cin L_{q}$, $cgeq0$, $d>qgeq d/2$. We prove the solvability of $Lu=fin L_{p}$ in bounded $C^{1,1}$-domains, $1<pleq q$, and of $lambda u-Lu=f$ in the whole space for any $lambda>0$. Weak uniqueness of the martingale problem associated with such operators is also obtained.



rate research

Read More

83 - N.V. Krylov 2020
In subdomains of $mathbb{R}^{d}$ we consider uniformly elliptic equations $Hbig(v( x),D v( x),D^{2}v( x), xbig)=0$ with the growth of $H$ with respect to $|Dv|$ controlled by the product of a function from $L_{d}$ times $|Dv|$. The dependence of $H$ on $x$ is assumed to be of BMO type. Among other things we prove that there exists $d_{0}in(d/2,d)$ such that for any $pin(d_{0},d)$ the equation with prescribed continuous boundary data has a solution in class $W^{2}_{p,text{loc}}$. Our results are new even if $H$ is linear.
108 - Hongjie Dong , N. V. Krylov 2021
In this note, we obtain a version of Aleksandrovs maximum principle when the drift coefficients are in Morrey spaces, which contains $L_d$, and when the free term is in $L_p$ for some $p<d$.
74 - N.V. Krylov 2020
We consider It^o uniformly nondegenerate equations with time independent coefficients, the diffusion coefficient in $W^{1}_{d,loc}$, and the drift in $L_{d}$. We prove the unique strong solvability for any starting point and prove that as a function of the starting point the solutions are Holder continuous with any exponent $<1$. We also prove that if we are given a sequence of coefficients converging in an appropriate sense to the original ones, then the solutions of approximating equations converge to the solution of the original one.
192 - N.V. Krylov 2021
In this paper we deal with the heat equation with drift in $L_{d+1}$. Basically, we prove that, if the free term is in $L_{q}$ with high enough $q$, then the equation is uniquely solvable in a rather unusual class of functions such that $partial_{t}u, D^{2}uin L_{p}$ with $p<d+1$ and $Duin L_{q}$.
145 - Hongjie Dong , N.V. Krylov 2009
The solvability in Sobolev spaces $W^{1,2}_p$ is proved for nondivergence form second order parabolic equations for $p>2$ close to 2. The leading coefficients are assumed to be measurable in the time variable and two coordinates of space variables, and almost VMO (vanishing mean oscillation) with respect to the other coordinates. This implies the $W^{2}_p$-solvability for the same $p$ of nondivergence form elliptic equations with leading coefficients measurable in two coordinates and VMO in the others. Under slightly different assumptions, we also obtain the solvability results when $p=2$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا