Finite difference approach to fourth-order linear boundary-value problems


Abstract in English

Discrete approximations to the equation begin{equation*} L_{cont}u = u^{(4)} + D(x) u^{(3)} + A(x) u^{(2)} + (A(x)+H(x)) u^{(1)} + B(x) u = f, ; xin[0,1] end{equation*} are considered. This is an extension of the Sturm-Liouville case $D(x)equiv H(x)equiv 0$ [ M. Ben-Artzi, J.-P. Croisille, D. Fishelov and R. Katzir, Discrete fourth-order Sturm-Liouville problems, IMA J. Numer. Anal. {bf 38} (2018), 1485-1522. doi: 10.1093/imanum/drx038] to the non-self-adjoint setting. The natural boundary conditions in the Sturm-Liouville case are the values of the function and its derivative. The inclusion of a third-order discrete derivative entails a revision of the underlying discrete functional calculus. This revision forces evaluations of accurate discrete approximations to the boundary values of the second, third and fourth order derivatives. The resulting functional calculus provides the discrete analogs of the fundamental Sobolev properties--compactness and coercivity. It allows to obtain a general convergence theorem of the discrete approximations to the exact solution. Some representative numerical examples are presented.

Download